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by Iasser Gutiérrez Valdés

“There’s plenty of room at the bottom: An Invitation to Enter a New Field

of Physics”[1] was a lecture given by physicist Richard Feynman at the annual Amer-

ican Physical Society meeting at Caltech on December 29, 1959. Feynman considered

the possibility of direct manipulation of individual atoms as a more powerful form of

synthetic chemistry than those used at the time. Beginning in the 1980s, however,

nanotechnology advocates cited it to establish the scientific credibility of their work.

Nanotechnology has many applications in different disciplines. For this reason, it has

been studied by several groups: experimental, theoretical, and computational. These

studies have proven that the size of nanoparticles can be controlled with atomic precision,

which allows study specific properties like electronics and magnetics.

This thesis, the study of structure, electronic, and magnetic properties of FeRh nanoalloy

will be developed, analyzing the relation between its properties with their size. The

chosen topology for this study was the rhomboidal dodecahedron in two sizes Fe8Rh7
and Fe88Rh81.

The calculations are based on a generalized gradient approximation to density functional

theory (DFT) and projected augmented wave method (PAW).

robintap307@gmail.com
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Chapter 1

Introduction

Nanotechnology refers to an emerging and developed field of science that includes syn-

thesis and improvement of numerous materials. Nanoparticles (NPs) are in the ranging

size from 1 to 100 nm. Due to their size, these NPs may have significant differences com-

pared with the bulk. At Present, different metallic nanomaterials are being produced

and used for diverse purposes, from medical treatments, industry productions, devices

of recording media storage. They also can be used in diverse materials of everyday use

as cosmetics or clothes[2–5].

Nanoparticles types

Iron: They are highly reactive due to their large surface area. In the presence of

oxygen and water, they rapidly oxidize to form free iron ions. They are used in medical,

labaratory and industrial applications.

Rhodium: Generally are used to make Nanoalloys. Most rhodium nanoalloys are used

for industrial or research purposes, such as laboratory equipment and thermocouples.

Rhodium alloys are also used to coat mirrors and in search-lights, because they reflect

light very well.

Nanoalloy: alloy nanoparticles show structural properties that are different from the

bulk. The properties of bimetallic alloys have more advantages over ordinary metallic

NPs.

Magnetic Nanoalloys: Magnetic nanoalloys are essential because of the vast range in

applications, such as bioseparation, drug delivery, and biosensors. Nanotechnology has

the potential to improve a wide array of tools based on nanoparticles; to become more

personalized, portable, cheaper, safer, and easier to administred.

1
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FeRh

The electronic, magnetic, and structural properties of FeRh are subject from several

studies based on density functional theory . However, there are many ways to analyze

nanoclusters, such as size, spin-polarization, alloys, chemical, and composition. At

ambient conditions, the FeRh bulk is a G-type AFM, with a total magnetic moment

on the Fe atoms around 3.3µB and with a non-appreciable magnetic moment for Rh

atoms. [6–10].



Chapter 2

Background

The nanoclusters have been studied exhaustively. The emphasis is mostly on nanoclus-

ters of a single element. However, the interest in nanoalloys, particularly on binary

nanoclusters, has been increasing. One of the motivations in these studies is the search

for new materials for specific technological purposes. Indeed, combining elements with

contrasting or complementary properties have been a better way to improve compounds

and for discovering new effects and possible applicabilities. The chances to adapt the

physical behavior are much more diverse in small particles than in condensed matter,

due to the possibility of controlling the system size. Hence, the experimental and the-

oretical investigations of nanoalloys are a subject of vital importance. The study of

magnetic materials is particularly challenging because it offers numerous ways of explor-

ing competing behaviors and, their different properties compared to the molecules or

bulk. One of the best candidates as a subject of study is FeRh nanoalloy for the cost

and applicability.

The following section will expose some magnetic concepts and the classification of mag-

netic materials.

2.1 Magnetic Moment

The most direct manifestation of magnetism is the force of attraction or repulsion

between magnets, which can be analogous to the Coulomb forces for electrostatically

charged bodies, described by:

F =
m1m2

4πµ0r2
, (2.1)

3



Chapter II 4

where m1m2 are the respectively body masses, separated by a distance r (m), and µ0 is

called the permeability of vacuum with the next value:

µ0 = 4πX10−7 henrys per meter (Hm−1) (2.2)

It also found that an electric current exerts a force on a magnetic pole. Generally, a

region of space on which a magnetic pole experiences an applied force called “magnetic

field”. The magnetic field can be produced by other magnetic poles or by an electric

current. The intensity of the field H is defined by:

H = ni, (2.3)

Where i is a current flow in the winding solenoid having n turns per meter. The unit of

the magnetic field is the ampere per meter Am−1.

2.2 Magnetization

The differential form to express the magnetic effects are:

∇ ·B = 0, ∇×B = µ0J (2.4)

This equation gets modified when the magnetic field B includes a contribution from

magnetized material. The divergence equation (∇ · B = 0) came because B can be

written as the curl of a vector function A. This result does not limit to magnetic fields

produced by conventional currents.

The “curl equation” is the differential form of Ampere’s circuital law. Here it must be

careful to include all types of currents that can produce a magnetic field. Hence, in the

general case, this equation is correctly written as:

∇×B = µ0(J+ Jm), (2.5)

Where J is the current density, and Jm is the magnetization current density, remember-

ing the magnetization current density is the curl of the magnetization to yield:

∇×
(

1

µ0
B−M

)
= J, (2.6)
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this is an equivalent to

∇×H = J (2.7)

where the auxiliary magnetic vector H is related to the real current density through its

curl.

2.3 Magnetic susceptibility and permeability

To solve problems in magnetic theory is essential to have a relationship between B and

H or, a relationship between M and one of the magnetic vectors. These relationships

depend on the nature of the magnetic material. In several classes of materials, there ex-

ists an approximately linear relation between M and H. If the material is both isotropic

or linear then,

M = χmH, (2.8)

where the dimensionless scalar quantity χm is called the magnetic susceptibility. If χm

is positive, the material is paramagnetic, and the presence of the material strengthens

the magnetic induction. If χm is negative, the material is called diamagnetic, and the

presence of the material weakens the magnetic induction. Usually, χm is a small quantity,

|χm| � 1(forparamagnetic, diamagnetic). (2.9)

A linear relationship between M and H implies a linear relationship between B and H:

B = µH, (2.10)

Where the permeability µ is obtained from the combination of H = 1
µ0
B−M, and (2.8)

µ = µ0(1 + χm). (2.11)
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2.4 Magnetic Materials Classification

A simple way to understand the susceptibility is the magnetization grade of material

in the presence of an external magnetic field. All materials can be classified for the

magnetic susceptibility χ as:

Diamagnetic

It means a weak magnetism, which occurs in a material containing no atomic magnetic

moments. The relative susceptibility of such a material is negative and small, typically

χ̄ � 10−5.

Diamagnetism is a property of all materials, and always makes a weak contribution to

the material’s response to a magnetic field. However, other forms of magnetism are so

much stronger than when multiple different types of magnetism are present in a material;

the diamagnetic contribution is usually negligible.

Figure 2.1: They are repelled by the applied magnetic field.
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Paramagnetic

It refers to a feeble magnetism, which has positive susceptibility of the order of χ̄ =

10−3 − 10−5, this magnetic behavior is found in materials that contain magnetic atoms

or ions with a considerable separated distance between each other. They have no ap-

preciable interaction with one another.

Figure 2.2: Spins are randomly oriented in presence of an external magnetic field.

Ferromagnetic

This term is used to denote strongly magnetic behavior, like the strong attraction of a

material to a permanent magnet. The origin of this strong magnetism is the presence of

a spontaneous magnetization produced by parallel alignment of spins. Instead of parallel

arrangement of all spins, there can be an anti-parallel alignment of unequal spins.

Figure 2.3: Spins are aligned parallel in magnetic domains.
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Ferrimagnetic

For ferrimagnets, the A and B-sublattices are occupied by different magnetic atoms and

sometimes by different numbers of particles. The antiferromagnet spin arrangement

results in an uncompensated spontaneous magnetization.

Figure 2.4: Spins ate aligned antiparallel but do not cancel.

Antiferromagnetic

For antiferromagnetic materials, the closest spins align antiparallel to one another, and

their magnetic moments cancel. Therefore, an antiferromagnet produces no spontaneous

magnetization and shows a weak magnetism. The relative magnetic susceptibility for

antiferromagnetic materials ranges from 10−2 to 10−5 almost the same as paramagnets.

The only difference lies in the presence of an ordered spin structure. When an external

magnetic field is applied parallel to the spin axis, the spins which are parallel and

antiparallel to the field have almost no torque, in other words, they keep their ordered

the spin arrangement, this is the reason why the susceptibility, in this case, is smaller

than for a normal paramagnet [11–15].

Figure 2.5: Spins are aligned antiparallel in magnetic domains.
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Hypothesis and Objectives

3.1 Hypothesis

To change the nanocluster size will modify the electronic and magnetic properties.

3.2 General Objective

To simulate the physical properties for two FeRh nanoclusters (Fe8Rh7 and Fe88Rh81)

in the framework of first principles molecular dynamic, taking into account the spin

polarization.

3.2.1 Specific Objectives

1.- To find a relation between the size and magnetic moment for each nanocluster.

2.- To study electronic and magnetic properties using the density of states of the respec-

tive nanocluster.

3.- To compare the results with previous experimental and theoretical studies.

9



Chapter 4

Methods

This section will present a detailed summary of the approximations that built DFT; this

way, the reader could have a proper perspective about this theory and its scope in the

nanoparticles study.

An ab initio method aims to find the solution to the many-body Schrödinger equation

section 4.1, which plays the role of Newton’s laws and conservation energy in classical

dynamics, ita purpose is to predict the future behavior of a dynamic system. The first

simplification to this goal is the Born Oppenheimer approximation (Adiabatic approxi-

mation) section 4.2, whereby the electronic and nuclear degrees of freedom are separated,

this division is due to the electrons are much less massive than the nuclei but experience

similar forces, consequently, the electrons will respond instantaneously to the movement

of the nuclei.

Another approximation to take into account is the Hartree-Fock approximation. In quan-

tum mechanics many problems are about atoms, molecules and involve several electrons

around some atomic nuclei. The Hartree-Fock approximation is one of the most impor-

tant ways to solve this kind of problem, the key to this method, are the assumptions it

makes about the electron wave function described in section 4.3.

Section 4.4 contains Bloch’s theorem, which is a wave composed of a plane wave modu-

lated by a periodic function and allows the study of crystalline systems.

10
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In 1964 Pierre Hohenberg and Walter Kohn demonstrated that there is a one to one

relationship between electronic density and external potential in the fundamental state,

wich equations will be exposed section 4.5.

The variational method section 4.6, is another main approximation used in quantum

mechanics, the basic idea is to guess a “trial” wavefunction for the problem, which con-

sists of some adjustable parameters called “variational parameters”. These parameters

are adjusted until the energy of the trial wavefunction is minimized.

Considering all the previous methods and approaches it is no longer the Schrdinger

equation solution need to find the energy of the system but, the Kohn-Sham equations

section 4.7, which instead of electron pair interactions, considers an electronic charge

density that will be equal to that of the fundamental state and all the physical properties

of the system will functionally depend on it. Section 4.8 contains the main approximation

that helps Kohn-Sham equations.

The projector augmented wave method (PAW) section 4.9 is a technique used in ab initio

calculations. It is a generalization of the pseudopotential and linear augmented-plane-

wave methods and allows DFT calculations to have higher computational efficiency. The

main idea of PAW is to divide the system into two regions, one for the core where it

uses a projection of the spherical harmonics and a second region where all the valence

electrons are found, it uses planes wave.

Al this theory is implemented in the software VASP, which the applications are described

in section 4.10.

section 4.11 contains all the computational details that were used in the simulation of

the nanoclusters.
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4.1 Schrödinger Equation

The equation to find the total energy of a many particles (electrons and ions) system is

the schrödinger equation.

The Schrödinger equation time exclude is used for any electronic structure of matter but,

for most cases, it is only for problems with atoms and molecules without time-depended

interactions. In the case of n− electron isolated in an atomic or molecular system, the

Schrödinger equation is:

ĤΨ = EΨ, (4.1)

where E is the electronic energy, Ψ = Ψ(x0, x1, x2, x3, ...xn) is the wave function, and

Ĥ is the Hamiltonian operator.

With some special considerations explained in section 4.2, the Schrödinger equation can

be described in atomic coordinates as:

Ĥ =
N∑

i=1

(
−1

2

)
∇i

2 +

N∑

i=1

v(ri) +

N∑

i<j

+
1

r ij
, (4.2)

for which,

v(ri) =
∑

α

Zα

riα
, (4.3)

this is the external potential which acts in the i-th electron, the potential due to the

core charge Zα, ri and rj are the distances of the i − th and the j − th electrons, and

rij is the difference between them.

The equation (4.2) can be rewritten as:

Ĥ = T̂ + V̂ee + V̂ne, (4.4)

where

T̂ =

N∑

i=1

(
−1

2
∇2

i

)
, (4.5)



Chapter IV 13

is the operator’s Kinect energy, the second part is the operator’s repulsion electron-

electron energy described as:

V̂ee =
N∑

i<j

1

r ij
, (4.6)

and the last term is the electron-core interaction, (beingM the number of ions) described

by:

Vne =
N∑

i

M∑

α

Zα

riα
, (4.7)

the total energy W is the electronic energy E, plus the repulsion energy due to the

core-core interaction.

Vnn =
∑

α<β

ZαZβ

Rαβ
, (4.8)

this is

W = E + Vnn. (4.9)

Is indifferent to solve 4.4 because includes E and Vnn in the Hamiltonian’s definition Ĥ,

and it works to solve Schrödinger’s equation in the form ĤΨ = WΨ. This equation is

solved with the appropriate boundary conditions, particulraly, when Ψ decays from zero

to infinite due an atom or molecule; and |Ψ|2 is a distribution probability, such as,

|Ψ(rN , sN )|2drN , (4.10)

where s are the spin coordinates[16–18].

4.2 Adiabatic Approximation

The Schrödinger equation for many particles can be written as:
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


− �2
(∑

i

�2i
2me

++
∑

j

�2j
2Mn

)
+
∑

i

∑
i �=l

e2

4πε0|ri − rl|

+
∑

i

∑
i �=k

ZjZke
2

4πε0|Ri −Rk|
−

∑
i

∑
i �=k

Zke
2

4πε0|ri −Rk|


Ψ = EΨ. (4.11)

However, specific considerations must be taken into account to simplify it.

Considering the ion’s mass is much bigger than electron’s; therefore, the kinetic energy

of ions may be omitted,

Mn � me.

The ion-ion interaction is constant because the ions are fixed, hence only the electron-

electron and electron-ion interactions are considered:

∑
i

∑
i �=k

ZjZke
2

4πε0|Ri −Rk|
,

thus the Schödinger’s equation can be rewritten as [19, 20]:

1

2

[
−�2

(∑
i

∇2
i

2me

)
+
∑

i

∑
i �=l

e2

4πεε0|ri − rl|
−
∑

i

∑
i �=k

Zke
2

4πεε0|ri −Rk|

]
Ψe = EΨe.

(4.12)

4.3 Hartree-Fock Approximation

Using N-order Slater’s determinant is the way to find the wave function for an N-electron

system, this wave function for all electrons is antisymmetric, obeys Pauli’s exclusion

principle, and it is described as:

ΨHF =
1√
N !




ψ1(x1) ψ2(x1) . . . ψN (x1)

ψ1(x2) ψ2(x2) . . . ψN (x2)
...

...
. . .

...

ψ1(xN ) ψ2(xN ) . . . ψN (xN )




=
1√
N !

det[ψ1ψ2 . . . ψN ].

(4.13)

The simplest case of Slater’s determinant (for two electrons) it will be used to prove the

antisymmetry property of the wave function,
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Ψ =
1√
2!

[
ψ1(x1) ψ2(x1)

ψ1(x2) ψ2(x2)

]

=
1√
2!
[ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)]

(4.14)

since, it treats it with indistinguishable electrons, it can express the determinant in a

generalized form as:

Ψ =
1√
2!

[∑N
i ψi(x1)

∑N
j ψj(x1)∑N

i ψi(x2)
∑N

j ψj(x2)

]

=
1√
2!

[∑N

i
ψi(x1)

∑N

j
ψj(x2)−

∑N

i
ψi(x2)

∑N

j
ψj(x1)

]
,

(4.15)

by notation
∑N

i ψi = ψi(x1).

The Hartree-Fock approximation is the method by which the orthonormal orbitals ψi

simplifies the determinant form Ψ; the normalization of the integral < ΨHF |ΨHF > is

equal to 1, and the following equation finds the value of the expectation energy:

EHF =< ΨHF |Ĥ|ΨHF >=
∑N

i=1
Hi +

1

2

∑N

i,j
(Jij −Kij), (4.16)

where,

Hi =

∫
ψ∗
i (x)

[
−1

2
∇2 + v(r)

]
ψi(x)dx, (4.17)

Jij =

∫ ∫
ψi(x1)ψ

∗
i (x1)

1

r12
ψ∗
j (x2)ψj(x2)dx1dx2, (4.18)

Kij =

∫ ∫
ψi(x1)ψ

∗
j (x1)

1

r12
ψ∗
i (x2)ψj(x2)dx1dx2, (4.19)

these integrals are real and with the condition Jij ≤ Kij ≤ 0. The term Jij are the

coulombians integrals, and Kij are the exchange integrals. These terms have important

equality:

Jii = Kii (4.20)
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thus the double integral (4.16) can have the terms i = j [17, 19, 20].

4.4 Bloch’s Theorem

For a crystalline solid, the ionic potential with any translationR, is described in unitvec-

tors terms as:

v(r) = v(r+R), (4.21)

and the wave function as:

ψ(r) = ψ(r+R) (4.22)

The Bloch’s theorems say, in a solid periodic system, each electronic wave function is

the product of a periodical lattice and a wave part.

ψi(r) = uie
ik·r, (4.23)

where the function ui has the same periodicity as the lattice, ergo ui(x) = ui(x + a),

being a the lattice period. It means the auto functions of the wave equation for a periodic

crystalline potential, are the product of a plane wave and another periodic function with

a period of the crystalline lattice. An important factor is the nature of the wavenumber

k = (2π)
λ , which the electron’s energy E depends on. The energetic relations is known

as “dispersion relation” and can obtain a significant quantity on information about the

electronic properties from a crystal, such as the density of states or the carriers effective

mass [21].

4.5 Hohenberg-Kohn Theorem

The Hohenberg-Kohn approximation is used to formulate the Density Functional The-

ory as an exact theory for many particles system, applicable to systems with particles

interactions,



Chapter IV 17

Vext(r) ⇐= n0(r)

⇓ ⇑

Ψi({r}) ⇒ Ψ0({r})

This is a scheme of the Hohenberg-Kohn theorem, where the small arrows represent a

solution of the Schrödinger equation, where the potential Vext determines all the states

by itself Ψi({r}), including the ground state Ψ0({r}) and the density of the ground state

n0(r). The long arrow represents the Hohenberg-Kohn, which complete the cycle.

Theorem I: For each particle system interacting in an external potential Vext(r), the

potential Vext(r) is singularly chosen, except for the density of the ground state n0(r).

Corollary I: Since the Hamiltonian is entirely determined, except for a constant energy

change, can be deduced the wave functions of several states (ground and excited). Thus,

the system properties are determined and only give the density of the ground state n0(r).

Theorem II: An universal functional for the energy E[n] can be defined in terms of the

density n(r), valid for any external potential Vext(r). The energy of the ground state

is exactly to the value of the global minimum functional and to the density n(r) that

minimize the ground state density n0functional(r).

Corollary II: The functional E[n] only works to determine the energy and the exact

density of the ground state. In general, the excited states of the electrons have to be

determined by other ways and the thermal equilibrium properties such as the specific

heat are determined directly for the free energy density functional [21, 22].

4.6 Ground State Variational Method

For ground state energy calculation, it is necessary to minimize the value of the total

energy E. When a system is in the state Ψ, can or can not satisfy (4.1). The average

energies measurement is given by:

E[Ψ] =
< Ψ|Ĥ|Ψ >

< Ψ|Ψ >
, (4.24)

where

< Ψ|Ĥ|Ψ >=

∫
Ψ∗ĤΨdx, (4.25)
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is the energy for each measure given by the values of Ĥ. Hence; the energy will be equal

or bigger than the ground state energy but, never smaller

E[Ψ] ≥ E0. (4.26)

The energy can be calculated by a Ψ whose is above the true ground state energy E.

The full minimization of the functional E[Ψ] is for all the allowed wave functions, in an

N electrons systems; they will give the ground state Ψ0 and the energy E[Ψ0] = E0.

This is the formal proof of “minimum energy principle”; and expanding Ψ in terms of

the normalized eigenstates of Ĥ,Ψk:

Ψ =
∑

k
CkΨk, (4.27)

the energy becomes

E[Ψ] =

∑
k|Ck|2Ek∑
k|Ck|2

(4.28)

Where Ek is the K eigenstate’s energy of Ĥ. Including the Ψk orthogonality. Because

E0 ≤ E1 ≤ E2......E[Ψ] is always bigger or equal to E0, and it finds the minimum if and

only if Ψ = C0Ψ0. Each eigenstate Ψ is a boundary of the functional E[Ψ], this means,

it can replace the Schödinger’s equation ĤΨ = EΨ with the variational principle [23].

δE[Ψ] = 0 (4.29)

4.7 Kohn-Sham equations

Kohn and Sham presented a way to approximate the universal functional, to achieve it

they developed a “fictional system” which is constituted by a system of not interacting

electrons, where the energy contributions of the system are described by:

E[ρi] = 2
∑

i

∫
ψi

[
−�2

2m

]
∇2ψidr

3 +

∫
Vn(r)n(r)dr

3

+
e2

2

∫
n(r)n(r

′
)

|r− r′ |
dr3dr

′3 + EXC [n(r)] + En(Ri)

(4.30)
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Where En is the coulomb energy associated with the interactions between cores in the

Ri positions, Vn is the total static potential electron-ion, EXC [n(r)] is the exchange-

correlation functional, and n(r) is the electronic charge density given by:

n(r) = 2
∑

i
|ψi(r)|2, (4.31)

only the minimum value of Kohn-Sham equations has physics meaning, and is equal

to the minimum energy value of the system formed by electrons and ions in the Ri

positions. The wave function ψi minimize the Kohn-Sham energy functional, given by

the self-consistent solutions,

[
−�2

2m
∇2 + Vn[ρ] + VH [ρ] + VXC [ρ]

]
ψi(r) = εiψi(r), (4.32)

where ψi is the wave function of the electronic state i, εi is the the eigenvalue of Kohn-

Sham, and VH is the Hartree potential of the electrons given by:

VH = e2
∫

n(r)

|r − r|
dr3, (4.33)

the exchange-correlation potential, VXC , is described by:

VXC(r) =
δEXC [n(r)]

δn(r)
. (4.34)

The Kohn-Sham equations represent a mapping from a system formed by many particles

to a system with only an effective potential due to all the electrons [23].

4.8 Approximations

4.8.1 Local Density Approximation

Is an analogy to the Schrödinger for an interacting N-electrons system. To ease the

energy calculations, The system has to be treated like a single electron system without

interaction and immersed in an effective potential. However, Does not exist a functional

way to find exchange-correlation energy; the Kohn-Sham equations do not provide a

form for this energy, this is necessary to make use of approximation along to DFT to

find this energy. A useful approximation is the “Local Density Approximation, (LDA)”,

where the exchange-correlation energy in r depends on the density at the same point,
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EXC [ρ] =

∫
εXC [ρ]ρ(r)d

3r, (4.35)

where εXC [ρ] is the exchange-correlation energy from an electron in an electronic gas

without interactions and with a uniform density. Each point |r| has associated a charge

density, and every point in the system has an exchange-correlation energy. The changes

in the density are very small.

The correspondence for the effective potential and the exchange-correlation potential

are described by:

vefe = v(r) +

∫
ρ(r

′
)dr

′

|r− r′ |
+

δEXC [ρ]

δρ(r)
= v(r) +

∫
ρ(r

′
)dr

′

|r− r′ |
+ V LDA

XC , (4.36)

according to the equation 4.35 the exchange-correlation potential term for LDA is:

V LDA
XC =

δ

δρ(r)

∫
(εXC [ρ]ρ(r)d

3r) = εXC(ρ(r)) + ρ(r)
δεXC(ρ(r))

δρ(r)
(4.37)

and εXC can be separate in two terms :

εXC = εx + εc, (4.38)

one term is for exchange and the other for correlation; thus, can simplify the problem,

and using the Dirac’s functional can be found:

εx(ρ) = −Cxρ
1
3 (r) Cx =

3

4

(
3

π

) 1
3

, (4.39)

leaving the appropriate numerical calculations for the εc term [17, 24, 25].

4.8.2 Generalized Gradient Approximation

For the approximation of the generalized gradient (GGA), the term exchange-correlation

depends on the density of spin.

ρ↑(r) and ρ↓(r) (4.40)
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where, for a small densities variance, the local spin density approximation (LSDA) is

written by:

ELSDA
XC =

∫
d3rρ(r)εXC(ρ↑, ρ↓), (4.41)

where ρ(r) is the total density defines as follow ρ(r) = (ρ↑ + ρ↓); however, the GGA

approximation is more general because it takes into account changes in the topological

form of density:

∇ρ↑(r) and ∇ρ↓(r) (4.42)

considering 4.41 the exchange-correlation term can be written as:

EGGA
XC =

∫
d3rρ(r)εXC(ρ↑, ρ↓;∇ρ↑,∇ρ↓), (4.43)

for the term of the exchange-correlation potential, the variation of the functional it can

express as:

δEGGA
XC =

∫
d3r

[
εXC + ρ

δεXC

δρ↑↓
+ ρ

δεXC

δ∇ρ↑↓

]
δρ(r), (4.44)

thus, the exchange-correlation potential has the form:

V GGA
XC =

∫
d3r

[
εXC + ρ

δεXC

δρ↑↓
+ ρ

δεXC

δ∇ρ↑↓

]
, (4.45)

this equation is more general than (4.41) and considers variation terms from the gradient.

Hence, it can get more detailed results for better visualization of the charge pseudo-

density [24, 25].

4.8.3 Self-Consistent Field Method

In the DFT, the fundamental quantity calculated by the self-consistent field method

(SCF) is the charge density. The calculations are made in cycles and stops when con-

verging until the ground state density.

For this method, the pseudo-potential interaction for each ion has to be obtained. First,

propose a wave function to give shape to the charge density to calculate the exchange-

correlation potential. The Kohn-Sham equations must be diagonalized to obtain the
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eigenstates. Then, has to calculate a new density and, if it is self-consistent with the

first proposed is the total energy charge density; otherwise, another charge density has

to be generated [23, 25].

4.9 Projector Augmented Wave method

The AE (all-electron) wave functions Ψnk, with an n index, corresponds to a summation

over the bands and k indexing the k-points, they obtain starting from PS (pseudo) ones

Ψ′
nk by using a linear transformation:

|Ψnk〉 = |Ψ′
nk〉+

∑
i
(|Φi〉 − |Φ′

i〉)〈pi|Ψ′
nk〉, (4.46)

where the index i stands for the atomic position �R, the angular momentum (l,m) and

index n to label different partial waves for the same site and angular momentum. The

AE Φi and PS Φ′
i partial waves are equal outside the PAW sphere. Hence, Ψn = Ψ′

n

outside a core radius rlc. The projectors p′i are dual to the PS partial waves:

〈p′i|Φ′
j〉 = δij . (4.47)

PAW method, use two grids: a radial inside the PAW sphere and a regular mesh in

the whole simulation cell, ergo, the partial waves and projector functions set apart in

angular and radial parts:

Φi(�r) =
Φnili(r)

r
Slimi

(r̂); Φ′
i(�r) =

Φ′
nili(r)

r
Slimi

(r̂)

p′i(�r) =
p′nili(r)

r
Slimi

(r̂)

, (4.48)

with Slm(r̂) the real spherical harmonics. On the other hand, the pseudized wave func-

tions are expanded on a plane wave basis set:

Ψ′
nk(�r) =

√
1

Ω

∑

�G

cnk( �G)ei(
�K+ �G)·�r, (4.49)

with Ω the volume of the unit cell [26].
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4.10 VASP

“The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic

scale materials modelling, e.g. electronic structure calculations and quantum-mechanical

molecular dynamics, from first principles.

VASP computes an approximate solution to the many-body Schrödinger equation, either

within density functional theory (DFT), solving the Kohn-Sham equations, or within the

Hartree-Fock (HF) approximation, solving the Roothaan equations. Hybrid functionals

that mix the Hartree-Fock approach with density functional theory are implemented as

well”[27].

4.11 Computational Details

This work is base on the density functional theory (DFT), implemented in The Vienna

ab initio simulations package (VASP). In this software, the exchange and correlation

energy are described using the spin-polarized local density approximation (LDA) and

Perdew and Wang’s generalized gradient approximation (GGA). VASP solves the Kohn-

Sham equations considering the spin polarization, and taking into account the core

electrons with the projector augmented wave (PAW) method, which is an all-electron

frozen-core approach that allows include the nodes of valence KS orbitals in the core

region and the effects on the electronic structure, total energy, and interatomic forces

[17, 24, 26, 28]. The wave functions were expanded in a plane wave basis set with an

energy cutoff Emax= 248 eV. A simple cubic supercell worked as the periodic boundary

condition, where the side sizes were 30.0 Å for the dimer and bulk study, 35.0 Å for the

smallest nanocluster and 49.0 Å for the larger. The discrete energy levels are broadened

using Gaussian smearing σ = 0.02 eV to speed up the system convergence. Since the

interested is limited systems, The chosen K-points for dimers and bulk were 10 10 10,

and for nanoclusters the Γ point restricted the reciprocal space summations[29–33]. The

structures analyzed were the dimers and bulks of Fe, Rh, and Fe-Rh nanoclusters with

a rhomboidal dodecahedron topology, varying number of atoms in the edge, resulting

in nanoclusters of Fe8Rh7 and Fe88Rh81 with an initial interatomic distance of 2.98 Å

[34–37].
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Results

Section 5.1 presents the structural properties obtained in this work, dividing into three

subsections, 5.1.1 contains the analysis of the interatomic distance for Fe2, Rh2, and

FeRh dimers. Table 5.1 shows the values for dimers obtained from this work and the

literature. 5.1.2 consists of the analysis of the lattice parameter for Fe, Rh, and FeRh

bulks. Table 5.2 shows the values obtained from this work and the literature. 5.2.3

contains all the interatomic distances (figure 1 and figure 2) for the FeRh nanoclusters

after the relaxation process.

Section 5.3 comprehend three subsections, 5.3.1 shows the density of states (DOS) for

Fe, Rh, and FeRh dimers and the value for the total magnetic moment obtained, 5.3.2

exposes the DOS for Fe, Rh, and FeRh bulks including the magnetic moment (total

and per atom), 5.3.3 contains the DOS comparison of FeRh nanoclusters and bulks with

their respective magnetic moment value.

All the results for FeRh (magnetic moment and interatomic distances) from this work

and literature are in Table 5.3.

24
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5.1 Structural Properties

5.1.1 Dimers

The dimers allow inferring useful trends about the different types of bonds found in

bulks and nanoclusters. The following subsection presents the results for Fe2, Rh2, and

FeRh dimers.

Figure 5.1: This figure shows the ground-state interatomic distance value for Fe2
(red), Rh2 (violet), and FeRh dimers (black).

The numerical value presented corresponds to the minimum energy bonding distance.

The Rh2 dimer has the largest interatomic distance followed by FeRh and Fe2 being the

smallest, the increase in the bond length is due to the size of the atomic radii for each

element, this is present in how the values tend to shift to the right in the interatomic

distance axis. The results are comparing with previous theoretical and experimental

studies in Table 5.1.

Interatomic distance (Å)

Dimer Fe2 FeRh Rh2
This Work 1.98 2.06 2.21

Theoretical

Ref. [38] 1.98 2.07 2.21

Experiment

Ref. [39] 2.02

Ref. [40] 1.80

Ref. [41] 2.12

Table 5.1: Interatomic distances results found for Fe2, Rh2, and FeRh dimers com-
pared with theoretical and experimental results.
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The results of this work match the theoretical results except for a slight difference of

0.01 Å in the FeRh bond contrary to the experimental results that have a significant

difference compared with these results, being the Rh dimer the largest difference, follow

by FeRh and Fe2 having the closest value.

5.1.2 Bulks

The study of the bulks is essential to understand the behavior and changes of nanoclus-

ter’s properties. This subsection contains the results for Fe, Rh, and FeRh bulks. The

Figure 5.2 shows the lattice parameter value of each bulk and Table 5.2 presents the

comparison of the results of this work with previous studies.

Figure 5.2: This figure shows the comparison of the ground-state lattice parameter
of Fe (red), Rh (violet), and FeRh (black) Bulks.

Lattice Parameter (Å)

Bulk Fe FeRh Rh

This Work 2.85 2.98 3.61

Theoretical

Ref. [42] 2.85

Ref. [43] 3.01

Ref. [44] 3.76

Experiment

Ref. [45] 2.86

Ref. [46] 2.98

Ref. [47] 3.84

Table 5.2: Lattice parameter results found for Fe, Rh, and FeRh bulks compared with
theoretical and experimental results.
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The numerical value presented in Figure 5.2 corresponds to the minimum energy lattice

parameter. The largest value is for the Rh bulk, follow by FeRh and Fe having the

smallest lattice parameter. The increase in the bond length value is due to the size of

the atomic radii for each atom. Analyzing both dimer and bulk results, it can appreciate

the bulks have a larger interatomic distance between its atoms.

The results for Fe bulk match with the theoretical value and have a minimum difference of

0.01 Å with the experimental, FeRh bulk match with the theoretical value but present

a difference of 0.03 Å. The Rh bulk presents the largest difference compare with the

previous works with 0.23 Å.

5.1.3 Nanoclusters

Fe8Rh7

The First nanocluster to analyze is the Fe8Rh7 formed by a total of 15 atoms 8 Iron and

7 Rhodium. Figure 5.3 shows the initial topology (left) with an interatomic distance of

2.58 Å for Fe-Rh bond and 2.98 Å between its Fe-Fe and Rh-Rh planes. The structure

after the relaxation process (right), whose new lengths will show in detail in the follow-

ing images. All the new bonds and their respective interatomic distance are shown in

Figure 5.6.

Figure 5.3: Illustration of the original structure (left) Fe8Rh7 and the change after
the relaxation process (right), where dark (light) spheres represents Fe (Rh) atoms.



Chapter V 28

For the Fe planes Figure 5.4, the relax distance found was 2.66 Å for the 12 Fe bonds,

this is a notable chance compare it with their original length between the planes was

2.98 Å.

Figure 5.4: New Fe bonds after a relaxation process.

For the Rh planes Figure 5.5, the relax distance found was 2.85 Å for the six bonds,

exists a decrease in the interatomic length compare with the original distance between

its planes was 2.98 Å.

Figure 5.5: Change in the interatomic distances between Rh atoms.

These new Fe-Fe and Rh-Rh lengths change the distance of Fe-Rh bonds from 2.58 Å

to 32 new bonds, 8 of 2.29 Å, and 24 of 2.42 Å. The nanoclusters size changed due the

new bonds from 5.96 to 5.7 Å.
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Figure 5.6: Number of new bonds Fe-Fe (red), Rh-Rh (violet), and Fe-Rh (black)
with their respective interatomic distances.

Figure 5.6 shows the number of bonds versus the interatomic distances of the Fe8Rh7

nanocluster. Comparing the new distances present in the nanocluster with the values

obtained from the dimers and bulks, conclude the Fe-Fe bond has a closer similarity

with Fe bulk lattice parameter with a difference of 0.19 Å. FeRh 2.42 bond has a close

similarity to the bulk value with a difference of 0.56 Å and FeRh 2.29 with the dimer

value with a difference of 0.23 Å. Rh-Rh bond value is closer to the dimer Rh value with

a difference of 0.64 Å.

Fe88Rh81

The second nanocluster to analyze is the Fe88Rh81 formed by a total of 169 atoms 88

Iron and 81 Rhodium, same as for Fe8Rh7, the original distance between Fe-Fe and Rh-

Rh planes were 2.98 Å. For the treatment of this nanocluster, the six Rh atoms in the

vertices were removed to have a better similarity with experimental studies. Figure 5.7

shows the original nanocluster (left) and the change in its topology after the relaxation

process (right).

Figure 5.7: Illustration of the original structure of Fe88Rh81 and its respectively
structure after relaxation. Dark (light) spheres represents Fe (Rh) atoms.



Chapter V 30

Figure 5.8: First Fe plane (4 atoms) after the relaxation process showing the numerical
value of the new interatomic distances.

The first Fe plane formed by four atoms Figure 5.8, they change its interatomic distance

from 2.98 to 2.29 Å after the relaxation.

Figure 5.9: Second Fe plane (16 atoms) after the relaxation process showing the
numerical value for the new interatomic distances.

The second Fe plane constituted by 16 atoms Figure 5.9, which changes its form from a

square to four trapezoids, with the side lengths of 2.43 and 2.75 Å.

The third Fe plane is formed by 24 atoms Figure 5.10, the four central atoms form a

square with sides of 2.72 Å, the distance of the external bonds is 2.29, 2.58, and 2.76 Å.
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Figure 5.10: Third Fe plane (24 atoms) after the relaxation process showing the
numerical value of the new interatomic distances.

Figure 5.11: Illustration of the average distance value of Fe planes.

The initial distance between Fe planes changes, from 2.98 to 2.58 and 3.02 Å, being

these distances the average value between the planes.

Figure 5.12: First Rh plane (9 atoms) after the relaxation process showing the nu-
merical value of the new interatomic distances.

Nine atoms constitute the first Rh plan Figure 5.12, its interatomic distance change from

2.98 to 2.93 Å.
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Figure 5.13: Second Rh plane (21 atoms) after the relaxation process showing the
numerical value of the new interatomic distances.

The second Rh plane is formed by 21 atoms, Figure 2, which presents a decrease in the

interatomic distances from 2.98 to 2.75, 2.93, 2.94 Å.

Figure 5.14: Third Rh (middle) plane (21 atoms) after the relaxation process showing
the numerical value of the new interatomic distances and bonds.

The third Rh plane is constituted by 21 atoms, Figure 5.14, after the relaxation, there

is a decrease in the interatomic distances from 2.98 to 2.45, 2.75, 2.9, and 2.93 Å.

Figure 5.15: Illustration of the average distance value of Rh planes
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Figure 5.15 shows the average value between the Rh planes after the relaxation. The

initial distance between Rh planes changes, from 2.98 to 2.45 and 2.90 Å, being these

distances the average value between the planes.

Figure 5.16: Number of new bonds Fe-Fe (red), Rh-Rh (violet), and Fe-Rh (black)
with their respective interatomic distances.

Figure 5.16 shows the number of bonds versus the interatomic distances of Fe88Rh81

nanocluster.

Analyzing the distances found in the images for Fe and Rh planes, it can be concluded

the largest values correspond to the inner nanocluster atoms and the smallest to the

atoms on the surface. Comparing these new distances with the values obtained from the

dimers and bulks, they present some similarities, the larges values with the bulks, and

the smallest with the dimers.
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5.2 Magnetic Properties

5.2.1 Dimers

Dimers have their energy well located Figure 5.17, this is the reason why its DOS has

the form of “peaks” and their magnetic moment can be calculated directly, by making

the difference between the states with spin-up and spin-down.

Figure 5.17: Illustration of the differences between DOS spin-up and spin-down for
Fe2, FeRh, and Rh2 dimers. Positive (negative) values correspond to majority (minor-

ity) spin.

Making the difference between DOS in each system, the total magnetic moment found

is 6 µB for Fe, 5 µB for FeRh, and 4 µB for Rh. The Fe2 dimer has the biggest

magnetic moment, followed by FeRh, and Rh2 having the smallest value. These results

are compared with previous studies in Table 5.3.
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Magnetic Moment (µB)

Dimer Fe2 FeRh Rh2
This Work 6.0 5.0 4.0

Theoretical

Ref. [38] 5.64 4.67 3.66

Experiment

Ref. [49] 6.0 5.0 4.0

Table 5.3: Total magnetic moment found for Fe2, Rh2, and FeRh dimers compared
with theoretical and experimental results.

The magnetic moment of this work are close to the corresponding average moments from

[38], and match with the reported results from [49].

5.2.2 Bulks

The bulks are systems with more atoms than dimers, this is the reason why their DOS

does not have the form of “peaks”, and now it is an actual density Figure 5.18.

Figure 5.18: Illustration of the differences between DOS spin-up and spin-down for
Fe, FeRh, and Rh bulks. Positive (negative) values correspond to majority (minority)

spin.
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Fe and FeRh bulks both have an ferromagnetic (FM) body-centered cubic (BCC) struc-

ture and their DOS matches comparing with previous studies. The Rh bulk has an

face-centered cubic (FCC) structure, and its DOS corresponds to an antiferromagnetic

(AFM) phase, which means its total magnetic moment is zero [50, 51].

Analyzing the magnetic moments from Figure 5.18, the Fe has a total magnetic moment

of 6.12, and a moment of 6.12 µB per atom, the FeRh has a total magnetic moment of

4.12 µB and 3.12 µB for the Fe atom and 1.0 µB for the Rh atom, and the Rh bulk has

a total magnetic moment due to its structure is FCC has AFM phase. These results are

compared with previous studies in Table 5.4.

Magnetic moment (µB)

Bulk Fe FeRh Rh

This Work 3.06 µFe=3.12; µFe=1.0 0.0

Theoretical

Ref. [42] 3.0

Ref. [43] µFe=3.11; µRh=1.7

Ref. [44] 0.0

Experiment

Ref. [45] 3.01

Ref. [46] µFe=3.2; µRh=0.9

Ref. [47] 0.0

Table 5.4: Magnetic moment results for Fe, Rh, and FeRh bulks compared with
theoretical and experimental results.

The value obtained in this work for Fe bulk is the largest compare it with the theoretical

and experimental results, the Fe atoms the value found is similar to the theoretical but

for the Rh atoms have close value with the experiment result for FeRh bulk, and the

magnetic moment for Rh bulks have the same value.
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5.2.3 Nanoclusters

In this subsection 5.2.3, the density of states and magnetic moment of Fe8Rh7 and

Fe88Rh81 are presented and compared with the FeRh bulk results.

Figure 5.19: Illustration of the differences between DOS spin-up and spin-down.
Positive (negative) values correspond to majority (minority) spin for Fe8Rh7, Fe88Rh81

nanoclusters and FeRh bulk

Comparing the DOS for both nanoclusters, it can appreciate the Fe88Rh81 has a larger

density than Fe8Rh7, this is due to the number of atoms in the system, Fe8Rh7 is similar

to the dimers DOS, and Fe88Rh81 is analogous to the FeRh bulk DOS form but presents

a higher density. The bigger total magnetic moment value is for the Fe88Rh81 due to

the difference between atoms of each system. The largest average magnetic moment

value per atom corresponds to the Fe8Rh7 with 3.15 µB for Fe, 0.53 µB for Rh, and the

Fe88Rh81 has 1.90 µB for Fe and 0.47 µB for Rh. The total average magnetic moment

found for Fe8Rh7 was 1.05 µB, and for Fe88Rh81 was 1.78 µB.



Chapter 6

Conclusions

After analyzing and discussing the results of the FeRh nanocluster simulations, the

following conclusions were reached.

• After the relaxation, the interatomic distances have a notable change where the

inner atoms tend to keep interatomic distances are alike to the bulk values, and the

surface atoms tend to regroup with their nearest neighbors having bond lengths

analogous to the dimers.

• The Fe8Rh7 DOS has a similar structure with the dimers due to its number of

atoms, and Fe88Rh81 DOS structure tends to the bulk form but presents a higher

density, and its geometry is similar to AFM phase.

• Analyzing the magnetic moment results in relation to the nanocluster size it proves

the larger the magnetic moment decreases when the system size increases. The

reason for this relation is: the particles are so small that a sizeable fraction of

the atoms reside at the nanocluster surface. These external atoms carry a larger

magnetic moment than the inner ones. The total moment is the sum of all, and

the average moment per atom is the sum divided by the number of atoms, as

the particle size increased, the average moment decreases because the ratio of the

numbers of the surface to inner atoms decreases.
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Rev. B 55, 15084 (1997).

[6] Suzuki, I., Koike, T., Itoh, M., Taniyama, T., and Sato, T. (2009). Stability of

ferromagnetic state of epitaxially grown ordered FeRh thin films. Journal of Applied

Physics, 105(7), 07E501.

[7] Fallot, M. (1938). Les alliages du fer avec les mtaux de la famille du platine. In

Annales de Physique (Vol. 11, pp. 291-332).

[8] Kudrnovsk, J., Drchal, V., and Turek, I. (2015). Physical properties of FeRh al-

loys: The antiferromagnetic to ferromagnetic transition. Physical Review B, 91(1),

014435.

[9] Sandratskii, L. M., and Mavropoulos, P. (2011). Magnetic excitations and femto-

magnetism of FeRh: A first-principles study. Physical Review B, 83(17), 174408.

[10] Thiele J.-U. , Maat S. , and Fullerton E. E., Appl. Phys.Lett. 82, 2859 (2003).

[11] Buschow, K. H. J. (2003). Handbook of magnetic materials (Vol. 15). Elsevier.

[12] Chikazumi, S., and Graham, C. D. (2009). Physics of Ferromagnetism 2e (No. 94).

Oxford University Press on Demand.

39



References 40

[13] Kittel, C. (1946). Theory of the dispersion of magnetic permeability in ferromag-

netic materials at microwave frequencies. Physical Review, 70(5-6), 281.

[14] Kittel, C. (1976). Introduction to solid state physics (Vol. 8). New York: Wiley.

[15] Jiles, D. (2015). Introduction to magnetism and magnetic materials. CRC press.

[16] Holstein, B. R. (2013). Topics in advanced quantum mechanics. Courier Corpora-

tion.

[17] Parr, R. G., and Yang, W. (1995). Density-functional theory of the electronic struc-

ture of molecules. Annual review of physical chemistry, 46(1), 701-728.

[18] Sakurai, J. J., and Napolitano, J. (2014). Modern quantum mechanics (Vol. 185).

Harlow: Pearson.

[19] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, A.

J. (1992). Iterative minimization techniques for ab initio total-energy calculations:

molecular dynamics and conjugate gradients. Reviews of modern physics, 64(4),

1045.

[20] Sthr, J., and Siegmann, H. C. (2006). Magnetism. Solid-State Sciences. Springer,

Berlin, Heidelberg, 5.

[21] Martin, R. M., and Martin, R. M. (2004). Electronic structure: basic theory and

practical methods. Cambridge university press.

[22] Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas. Physical review,

136(3B), B864.

[23] Kohn, W., and Sham, L. J. (1965). Self-consistent equations including exchange

and correlation effects. Physical review, 140(4A), A1133.

[24] Engel, E., and Dreizler, R. M. (2013). Density functional theory (p. 65). Springer-

Verlag Berlin An.

[25] Giustino, F. (2014). Materials modelling using density functional theory: properties

and predictions. Oxford University Press.
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