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Time-variant failure probability of critical slopes under strong rainfall 

hazard including mitigation effects 

The time-variant failure probability for critical slopes under strong rainfalls, which 

might cause reductions on the soil shear strength, is calculated and compared to 

the target failure probability. The soil properties and rainfall characteristics are 

considered as random and the correlation between rainfall intensity and duration is 

included to assess the impact of water infiltration on the slope failure probability. 

The failure probability, defined as the probability that the safety factor is less than 

1, is calculated through a Monte Carlo simulation process. The paper emphasizes 

the importance of the time during the water infiltration into the soil, as the rainfall 

sequence occurs. The target failure probability, derived from the minimum 

expected life-cycle cost, is compared to the slope failure probability to decide if 

the slope requires mitigation measures. If mitigation is required, the slope model 

is modified and a new annual failure probability is calculated. The slope annual 

failure probability, for 3 sites under strong rainfall hazard, is found to be around 

0.78. However, by introducing anchor bars, the failure probability reduces to 0.037. 

The proposed formulation allows for the risk-based prioritization for the attention 

of a set of slopes at several sites and the consideration of mitigation actions.  

Keywords: slope stability; environment, risk and probability analysis, safety 

factors, reinforcement 

1 Introduction 

Landslides occur all around the world as reported by Larsen and Simon (1993), Glade (2001), 

Marengo and Granados (2011) and, sometimes, the failure consequences involve fatalities and 

large economic losses: Lin and Jeng (2000), Alcántara (2004, 2008). The soil stability analysis, 

as started by Fellenious (1927) and Terzaghi (1943), considered certain assumptions regarding 

mainly the failure path. The classical 2D slice method with circular critical slip surface has been 

modified since then. Some researchers like Fukuoka (1980), Orense (2004) and Zhang et al., 

(2005) have studied the change on soil properties after the occurrence of a strong rainfall.  

A general equilibrium equation has been described by Fredlund (2007) through a hazard 

management system to cope with the failure consequences. The water infiltration through the soil 



 

 

have been considered through the Richard´s equation for unsaturated flow, Richards (1931), to 

obtain the effective pore pressure, among other variables. 

The fact that the soil partial saturation is more unfavourable than the full saturation has been 

recognized by researchers like Fredlund et al. (2012). The geo-hydro-meteorological hazard has 

been studied from many points of view: one of them is the challenging issue of the amount of 

water that infiltrates the soil and produces a sudden increment on the slope vulnerability, as shown 

by White and Singham (2012). 

The relationship between intensity and duration of rainfalls that provoke landslides has been 

explored in the work by Guzzeti et al. (2008). Several approaches have been proposed to deal 

with the time consuming shortcomings of classical and crude Monte Carlo simulation techniques. 

Modern numerical techniques, like genetic algorithms, chaos expansion polynomials and variance 

reduction procedures, among others, are being promoted by several research groups like Luo et 

al. (2012) and Jiang and Huang (2016).  

The potential of Bayesian networks and copulas are currently being used to consider to model 

correlations among variables and to update the probabilities, especially when the resistance of the 

soil structure suddenly changes to increase the soil vulnerability, as studied by Wu (2013). 

A safety factor, defined in terms of work rates, has been used to calculate the pdf of the slope 

safety factor and a normal distribution was found to approximate well the internal friction angle 

for values up to 16° as described by Florkiewicz and Kubzdela (2013). Ground improvement 

achieved by vertical drains and surcharge preloding has been assessed by using stochastic cost 

optimization (Kim et al., 2014). 

In Mexico the lanslide at La Pintada, Guerrero caused 78 deaths and motivated to do in-deep 

studies for mitigation of this hazard as reported by Alcántara-Ayala, et al., 2017. A new procedure 

based on recursive algorithm FORM with sensitivity analysis in the space of original variables 

was proposed by Ji and Liao (2014).  

Erzin and Cetin (2014) assessed 5000 homogeneous finite slopes with different slopes using 

artificial neural network (AAN) and multiple regression (MR) models. They found that AAN 

produces more reliable results than MR models. 



 

 

In spite of all these efforts, there are still some modelling errors, like the ones due to lab and 

field work uncertainties, especially on parameters like the matric suction, which currently do not 

have systematic calibration procedures. Other errors are induced, for example, on the statistical 

treatment of rainfall intensity: the consideration of maximum daily or hourly values from the 

records which have a discrete handling, instead of the more realistic model through a continuous 

variable. There is an issue with the rainfall duration and the correlation between intensity and 

duration, which is not constant although sometimes is considered as a fixed number. The 

assumptions about the value of the target failure probability is other example of our imperfect 

knowledge to set an upper tolerable bound on the slope failure probability. 

In the present study, the time-variant slope failure probability is calculated to identify the 

priority order to provide attention according to its relative value respect to the target limit and 

also considering the failure consequences. The target failure probability is obtained as a function 

of the expected loss due to failure consequences; this is especially important to discriminate cases 

with different failure consequences. 

A simplified approach is proposed here to assess the priority level required for slopes for the 

attention for scarce funds allocation. Random soil properties and random rainstorm characteristics 

are analysed, in addition to the time dependent sampling of the rainfall conditions. In case the 

slope failure probability exceeds the target value, a mitigation action is assessed to reduce the 

slope failure probability. 

 

2. Proposed formulation 

The proposed formulation includes the soil stability analysis including uncertainties on some soil 

properties and rainfall characteristics. Cost data, for all the considered failure consequences, are 

also included. Later on, the rainfall precipitation model (bivariate intensity-duration distribution 

as derived from the available records for each site) are introduced and the soil-water 

characteristics are considered in the form of SWCC (soil-water characteristic curves) for the soil 

types above mentioned. Five random variables are considered: soil friction angle, the soil 

cohesion, the soil volumetric weight, the rainfall intensity and the rainfall duration. Later on, a 



 

 

Monte Carlo simulation process is performed by considering a rainfall intensity per day, where 

each trial includes the variation of rainfall intensity sequence for several days. The slope safety 

factor is calculated by following the conventional slices stability analysis procedure. These safety 

factor is conditional to the randomly generated values of the variables and represents the slope 

safety for the considered trial and the specified day; there will be as many safety factors as trials 

are being performed for that day. Once the failure probability is calculated through the event 

where the safety factor is lower than 1 for that day, the process is repeated for all the days into 

the rainfall season.  

The target failure probability is calculated by minimizing the present value of the expected life-

cycle cost and it is compared to the previously calculated slope failure probability.  

The number of trials for the MCS is the minimum number to have a stable value of the mean 

failure probability. The exercise is illustrated for 3 sites in Mexico with strong rainfall regime 

and, if the slope failure probability exceeds the target value, a mitigation work like the installation 

of anchors (Montoya, 2009) is proposed and modelled and the failure probability is re-calculated. 

Several arrays of anchors sizes and distributions are essayed, until the slope failure probability is 

lower than the target value. The formulation may be adapted to devise optimal retrofit strategies 

and to derive cost/benefit basis to quantify the trade-off between the cost of the mitigation works 

and the cost reduction on the expected failure costs. 

 

2.1 Numerical simulation procedure 

By considering the friction angle , the cohesion c, the volumetric weight , the rainfall 

intensity i and the rainfall duration d as random variables, the slope failure probability may be 

defined as:  

           𝑃𝑓 = ∭ ∬ (𝑆𝐹 < 1|∅, 𝑐, 𝛾, 𝑖, 𝑑)𝑓(∅, 𝑐, 𝛾, 𝑖, 𝑑)d∅d𝑐d𝛾d𝑖d𝑑
𝑖,𝑑∅,𝑐,𝛾

               (1) 

Where SF is the safety factor, calculated for each trial. Given that the joint probability density 

function f is hard to be analytically determined, a simplified numerical procedure needs to be 

implemented. Given that the soil mechanical properties change according to the rainfall features 



 

 

and the rainfall intensity is related to the rainfall duration, the trials for the MC simulation may 

be structured as follows: first, simulate the rainfall duration, then calculate the rainfall intensity 

including the correlation with the rainfall duration. Later on, the soil properties are calculated as 

a function of the rainfall features and the random variation on these properties. In the last step of 

the trial, the slope stability is analysed and the failure probability is calculated.  

The safety factor SF, at each trial, is calculated from the classical slices method (Fellenious, 

1927), which resorts on the values of , c, , i and d, and for the geometry of the considered slope. 

The safety factor is based on the forces provoking and resisting the sliding throughout the 

considered circular failure path. The moment´s equilibrium may be expressed as: 

                                                    𝑆𝐹 =  
∑[𝑐´𝑏𝑅+(𝑁)𝑅𝑡𝑔𝜑´]

∑ 𝑊𝑥−∑ 𝑆𝑚𝑅−∑ 𝑁𝑓+∑ 𝑘𝑊𝑒±∑ 𝐴𝑎
                                      (2) 

Where: c´ = effective cohesion force, b = slice base length, R= radius of the circular sliding 

surface, N = normal force to the sliding surface, ´= effective friction angle, W= slice weight, x 

= horizontal distance from slice centroid to the center of rotation (centroid of circular failure path), 

Sm= friction force, A = resultant force from water, a = distance from the center of rotation to the 

water force. 

A simplified flowchart describes the calculations, see Figure 1. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Simplified flowchart of proposed formulation 

 

The expected life-cycle cost E(CL) is calculated, according to: 

                                𝐸(𝐶𝐿) = 𝐶𝑖 + 𝐸(𝐶𝑓)                            (3) 

Where Ci is the slope initial cost and E(Cf) is the expected present value of the cost of the failure 

consequences.  

                                     𝐶𝑖 = 𝐶1 − 𝐶2(𝑙𝑛𝑃𝑓)                            (4) 
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Where C1 and C2 are constants that depend on the slope; specifically, C2 is the cost to reduce the 

slope failure probability in one cycle of ln. The cost of failure consequences, Cf, includes the 

potential fatalities, property loss and economic consequences, for instances the user costs of 

highway detours if there is a highway near the slope.  

The expected present value of the cost of failure E(Cf) is (Ang and De León, 2005): 

                                  𝐸(𝐶𝑓)  = 𝑃𝑉𝐹 (𝑃𝑓)𝐶𝑓                                (5) 

Where PVF is the present value factor which is expressed in terms of the annual discount interest 

rate r and the slope lifetime T: 

                                  𝑃𝑉𝐹 = [1 − 𝑒𝑥𝑝(−𝑟𝑇)]/𝑟                         (6) 

The slope failure probability included in the expected life-cycle cost, and defined in Eq. (1), 

depends on the safety factor, SF, which is calculated by the slices method. 

The target failure probability Pf
T is used, as a tolerable limit, to decide if the slope is stable (Pf

T> 

Pf) or requires mitigation works (Pf
T> Pf) to reduce the slope failure probability to keep it below 

its target value. The target failure probability is obtained from the minimization of the expected 

life-cycle cost. 

                                    
𝜕𝐸(𝐶𝐿)

𝜕𝑃𝑓
= 0                                   (7) 

                                  𝑃𝑓
𝑇 =

𝐶2

𝑃𝑉𝐹(𝐶𝑓)
                                 (8) 

Where PVF is the present value factor and Cf the cost of failure consequences. 

 

2.2 Soil shear stresses and infiltration on slope soil 

The shear stress on the soil, once a rainstorm starts modifying the soil structure, is one of the most 

important parameters on the soil stability analysis and it needs to be calculated in terms of the 

water pore pressure, effective cohesion and soil matric suction, among other parameters. These 

shear stress is obtained, according to Vanapalli et al., 1996: 

                     𝜏 = 𝑐´ + (𝜎𝑛 − 𝑢𝑎)𝑡𝑔𝜑´ + (𝑢𝑎 − 𝑢𝑤)(
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
)𝑡𝑔𝜑´                  (9) 

Where: 



 

 

 = soil shear stress 

c’ = soil effective cohesion 

σn = total normal stress 

uw = pore pressure (water) 

ua = pore pressure (air) 

’ = effective friction angle 

θw = volumetric water content 

θr = residual volumetric water content 

(σn – ua) = net stress  

(ua – uw) = soil matric suction 

 

The water infiltration into the soil, due to rainfalls, is calculated through the equation developed 

by Richards (1931): 

                           
𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝐻

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝐻

𝜕𝑦
) + 𝑄 =

𝜕𝜃

𝜕𝑡
                          (10)                            

where: 

H = total pressure 

kx = hydraulic conductivity in the x- direction 

ky = hydraulic conductivity in the y-direction 

Q = flow applied in the contour 

 = volumetric water content 

t = time 

The calculations are performed through the commercial software Geostudio (2019). 

 

3. Illustrations 

 

A typical slope in Mexico and 3 sites, with strong rainfall hazard in Mexico, was selected to show 

how the slope vulnerability changes under rainfalls with combined intensity-duration that results 

on a sudden increment on vulnerability. The slope is assumed to be the same and the 3 sites were 



 

 

selected according to the location of available meteorological stations at regions were usually 

occur strong rainfalls. 

3.1 Description of the proposed slope 

The slope is located at Zinacantepec, Mexico and the geometrical model, with the considered 

failure surface, is shown in Figure 2. The failure surface is identified after a series of preliminary 

analyses, with several assumed failure paths, under the condition of the minimum value of the 

safety factor. 

 

 

 

 

 

 

 

 

 

Fig. 2 Geometric profile of slope and failure surface 

 

The statistics (mean and standard deviation) of the soil properties in its initial condition, are 

shown in Table 1. The initial conditions are dry conditions, before the rainstorms start. 

Table 1   Statistics of soil properties, initial condition 

Soil Statistics Cohesion Friction 
angle 

Volumetric  
weight  

Sand 
Mean 8 kPa 35° 18 kPa/m3 

 
Standard 
deviation 

1.6 kPa 3° 0.15 kPa/m3 

Silty clay 
Mean 10 kPa 25° 19 kPa/m3 

 
Standard 
deviation 

2 kPa 2° 0.16 kPa/m3 
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3.2 Description of meteorological hazards for the illustration 

Three states in Mexico have the strongest rainfalls ever recorded: Chiapas, Tabasco and 

Morelos. The above described slope is considered to be located at sites within these 3 states, for 

illustration purposes. 

For example, the recorded rainfalls in Chiapas show that, from 1962 to 2017, there were 14 

days with more than 100 mm/h rainfall and 3 other times the rain duration longed 13 consecutive 

days (De León and Pérez, 2016).  

 
 

Fig. 3 Mean intensity for several duration for Chiapas slope 

 

Goodness of fit tests were performed for these records and it was found that the best fit is 

exponential for the rainfalls intensity in Chiapas. Figure 4 shows the actual and expected 

frequencies for Chiapas rainfall intensities. 



 

 

 

Fig. 4 Actual and expected exponential frequencies for Chiapas rainfall intensities 

Given the correlation between intensity and duration, the following relationships between mean 

intensity conditional to the duration, Equation (11), and standard deviation of intensity for a given 

duration, Equation (12), were obtained for the MCS calculations: 

                             𝐸((𝑖|𝑑)) = 1.303 ln(𝑑) + 9.369                        (11) 

                             𝜎𝑖 = 2.764 ln(𝑑) + 4.865                                   (12) 

 

Once the MCS process was performed, as above described, it was observed that, without rainfalls, 

the slope safety factor is 4.76 (see Figure 5). This was the slope initial condition. 
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Fig. 5 Screen view of Chiapas slope for a day with no rainfall conditions 

 

 

However, during the intense rainfall days, the safety factor was reduced to values lower than 1, 

see Table 2, and the failure probability increased to a very high value as 0.71. 

 

Table 2   Safety factor and failure probability for slope at Chiapas, for 
intense rainfall days 

Day Rainfall Intensity (mm/hr) Safety factor Failure probability 

15 44 0.38 0.71 

16 44 0.38 0.71 

17 11 1.39 0.35 

18 11 1.39 0.35 

19 4 2.55 0.07 

20 6 2.06 0.16 



 

 

21 6 2.06 0.16 

22 6 2.06 0.16 

23 6 2.06 0.16 

24 6 2.06 0.16 

25 10 1.49 0.32 

26 24 0.66 0.62 

27 24 0.66 0.62 

 

The safety factor was plotted against time, for a trial of the MCS process, as shown in Figure 6.  

 

Fig. 6 Screen view of safety factor for Chiapas slope for a trial of 45 days  

 

The slope annual failure probability is 0.71, which is compared to the target value, from Equation 

(8). The target failure probability is calculated by considering a failure cost Cf = 1.3 million USD 

and C2 = 0.6 million USD; with these figures, the target value is 0.037. It is observed that the 

slope failure probability (0.71) is too high for the allowable (target) value (0.037). Therefore, the 

slope requires mitigation actions. 



 

 

As previously performed for Chiapas, the relationships between mean intensity vs: duration 

and standard deviation of intensity vs: duration, are calculated for the Tabasco slope. Tabasco has 

rainfall intensity records, between 1943 and 2018, with more than 100 mm/hr in 20 non 

consecutive days and, in 5 of these days, the registered intensity was 185.5 mm/hr; see Figure 7. 

 

 

Fig. 7 Mean and standard deviation of intensities vs: duration for Tabasco 

 

                                 𝐸(𝑖|𝑑) = −26.78 ln(𝑑) + 92.539                          (13) 

                             𝜎𝑖 = −25.82 ln(𝑑) + 86.583                                  (14) 

The MCS was performed for the slope located at Tabasco and, in the 10th. day of rainfalls, the 

safety factor was 0.29 and the corresponding slope annual failure probability is 0.78, again too 

high for the target value obtained for reasonable failure costs. Figure 8 shows a screen shot of a 

sample of the water pore pressure and the safety factor space distributions. 



 

 

 

Fig. 8 Screen view of a trial for 1st. day with rainfall for Tabasco slope 

 

Finally, the same relationships were calculated for Morelos. In Morelos, within the recording 

period from 1924 to 2014, there was a rainfall series of 12 days with an intensity of 186.5 mm/hr. 

The mean and standard deviation of the intensity vs: the duration is shown in Figure 9. 

 

Fig. 9 Mean and standard deviation of intensities vs: duration for Morelos 

 



 

 

                             𝐸(𝑖|𝑑) = −9.755 ln(𝑑) + 49.874                       (15) 

                             𝜎𝑖 = 2.054 ln(𝑑) + 24.633                                  (16) 

After performing the calculations for the evolution of the safety factor, the series of safety factors 

for a 50 days period, is shown in Figure 10.  

 

Fig. 10 Screen view of safety factor, for a 50-days period, for Morelos slope 

 

The minimum value of the slope annual failure probability is 0.74 and the corresponding safety 

factor is 0.23. Figure 11 shows the time variation of the failure probability, for a 20 days period, 

for Tabasco and Morelos. 



 

 

 

Fig. 11 Failure probability, for a 20-days period, for Tabasco and Morelos slope 

 

As observed, these slopes require mitigation measures in order to increase the safety factor and, 

consequently, reduce the failure probability. 

 

4. Mitigation actions 

4.1 Alternatives 

One of the mitigation works may be the slope cut (reduction on slope inclination angle), the 

covering of concrete on top and or the sides of the slope, the installation of steel anchors to 

reinforce the soil, the colocation of drainage pipes and the installation of a steel grid on the slope 

surface, among others. The selected alternative has to be modelled to recalculate the new failure 

probability, and also the corresponding costs of the works, to estimate the cost/benefit and 

compare the alternatives, looking for the optimal mitigation work. In this paper the option of 

anchors installation is selected to be applied to the Chiapas slope. 

4.2 Anchorage applied to Chiapas slope 

The Eq. (2), and therefore the method of slices, is slightly modified to include the anchor forces 

AN to resist the sliding trend on the failure surface (Instituto Vasco de Seguridad y salud 
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Laborales. 2004; Monroy, 2007). Several anchors arrays may be essayed in order to make an 

efficient use of these forces to increase the safety factor. The main requirement is that all anchor 

bars should cross the slope failure path at several locations. See figure 12. 

 

Fig. 12 Slope analysis with anchor bars 

The new safety factor, SFA, including the anchor forces, is (Valladares, 2015): 

                                                    𝑆𝐹𝐴 =  
∑[𝑐´𝑏𝑅+𝑅𝑁(𝑡𝑔𝜑´)]+𝐴𝑁

∑ 𝑊𝑥−∑ 𝑆𝑚𝑅−∑ 𝑁𝑓+∑ 𝑘𝑊𝑒± ∑ 𝐴𝑎
                                      (17) 

As an example, it will be illustrated the mitigation applied to the Chiapas slope: 

The installation of a series of 8 anchorage bars, 5/8”, is proposed, as illustrated in Figure 13. 

The minimum safety factor increases to 2.23, a substantial increment respect to the minimum of 

0.78, without anchor bars. The corresponding failure probability becomes 0.0372 which meets 

the target value.  

 

 

 

 

 



 

 

 

 

Fig. 13 Slope analysis with anchorage bars for Chiapas 

 

The cost of material and installation of the anchor bars about 0.2 million USD. By following the 

same procedure, other mitigation methods may be essayed and their corresponding costs may be 

calculated in order to select the optimal mitigation work, i. e., the one that best balances the costs 

with the reduction on failure probability. 

 

5. Conclusions 

A simulation procedure to predict the time-dependent failure probability of slopes under strong 

rainstorms, and to assess the economical effectiveness of mitigation measures in case they are 

needed, has been proposed and illustrated for 3 sites in Mexico. The procedure includes the 

uncertainties on the soil resistance properties and on rainfall intensity and duration and it 

combines the safety and cost assessments.  

For the slope and rainfall environment considered here, the safety factor may be as low as 0.38, 

and the corresponding annual failure probability as high as 0.78, like the results obtained for 

Tabasco. 



 

 

Critical slopes (with vulnerable geometries and soft soil types) and strong rainfalls (with the 

combination of moderate/high intensities and long duration) increase the slope failure probability 

and may require the implementation of mitigation measures, like the one applied to the Chiapas 

slope. 

For slopes similar to the one illustrated here, located at Chiapas, Tabasco and Morelos mitigation 

works are mandatory and the proposed procedure may help to identify the optimal work type for 

each condition. 

The use of anchor bars mitigates the slope vulnerability, as illustrated for the Chiapas slope, and 

other mitigation works should be assessed to develop optimal recommendations. For the Chiapas 

slope, the use of 8 anchorage bars, with 5/8” diameter, with a cost of 0.2 million USD, reduces 

the failure probability from 0.78 to 0.037, which is enough to meet the target failure probability. 

The procedure may be extended to generate prioritization on the attention to slopes with different 

geometries, soils composition and rainfall patterns around the country. 

It is recommended to extend this work to derive optimal recommendations for mitigation works, 

to generate landslides hazard/risk maps, for each region, and to propose risk-based guidelines to 

protect critical infrastructure or populations located on landslide-prone neighbourhoods. 
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