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Abstract

In this study, we present a nucleus segmentation proposal of white blood cells

(WBCs) using chromatic features. It is human inspired on perception of color:

a person locates the nucleus of the WBCs by the chromatic contrast between

the nucleus and the other elements of the blood smear. To implement that, we

segment the nucleus by selecting the pixels with high chromatic variance.

First, an unsupervised neural network, which was trained offline to recognize

different colors is applied to the images. Thereby, the hue of the pixels is nor-

malized, and the chromatic variance is accurately computed. Processing the

hue and using the unsupervised neural network the brightness and staining

variations are robustly estimated. In previous related works, the color compo-

nents are processed separately as uncorrelated intensity channels, and the

mathematical operations are selected intuitively. Unlike that, we use color as a

feature without separating the hue components, keeping their correlation, so

the formal treat becomes systematic. Experiments use the RGB and HSV

spaces with three public image databases: ALL-IDB2, CellaVision, and JTSC.

A pixel-level segmentation evaluation is performed by comparing the seg-

mented images with the ground truth. Our proposal competes with current

methods since the values in accuracy, specificity, precision, sensitivity, dice

coefficient, kappa index, and true positive rate all are similar to or improved

upon the state of the art. The performance of our approach is classified as

excellent regarding the kappa index value, and it detects at least 80% of the

cells with an average dice coefficient larger than 0.9.
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1 | INTRODUCTION

White blood cells (WBCs) or leucocytes are blood cells
that actively participate in the human immune system to
defend the body against invaders; when a person suffers
from an infection, the immune system creates more
WBCs to defend the body1,2,3. An increased number of

WBCs is relevant factor to determine if the body is being
infected. Also, in leukemia cancer, abnormal WBCs pro-
liferate and counting them is essential to diagnose this
disease in a person. As well, it is essential to analyze the
WBCs' nucleus features to provide information about
unhealthy due to leukemia, despite the low number of
WBCs.4,5 The Global Cancer Observatory reported
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474 519 new cases and 311 594 deaths in 2020.6 There-
fore, it is pertinent an agile diagnose on cancer stage of
deploy that the WBCs nucleus segmentation and late
automated recognition and counting helps to contribute
to progress in the scope of this computational diagnosis
medicine.

The detection and analysis of WBCs are traditionally
performed from blood sample extracted from the patient.
The WBCs are stained to become visible, a hematologist
analyzes the sample, and from the results reported the
doctors provide a diagnosis. The analysis process fre-
quently is slow because it is not automated; also, the
analysis may be affected by the fatigue level and experi-
ence of the hematologist, with involuntary errors or mis-
reports. Several related works focus onto study the
nucleus features of the WBCs to provide important data
to detect major types of leukemia.7 Therefore, the devel-
opment of algorithms for nucleus segmentation is an
active research area within image processing that contrib-
utes with the automated analysis of the WBCs.7 In artifi-
cial vision systems for WBCs nucleus analysis, the usual
stages are: (a) image acquisition, (b) image preprocessing,
(c) nucleus segmentation, (d) feature extraction, and
(e) classification.8 In this study, we present an efficient
WBC's segmentation proposal on the base of the nucleus
segmentation quality, a feature extraction that is highly
discriminative. The nucleus segmentation implies chal-
lenges such as hue variations and brightness variations,
because of the staining procedures and illumination. The
shape of the nucleus, the magnification, and the cameras
employed to acquire the images should be considered in
a further analysis—beyond the scope in this work.

Previous works on nucleus segmentation of WBCs
employ: convolutional deep learning,1,9 image
descriptors,9,10 convolutional neural networks,11-14 geo-
metric active contours,15 spectral signatures,16,17 among
other techniques.18-31 Most related works that use color
information to segment WBCs do not use color as a fea-
ture, since mathematical operations are performed on the
color components separately as intensity channels, and,
the color components are intuitively chosen.27,32-42 How-
ever, it means that through all chromaticity is not prop-
erly processed.

We propose the color processing as a sole feature for
segmentation. Our proposal mimics the human percep-
tion of color that recognizes colors first by the chromatic-
ity and then by the intensity. For instance, in Figure 1, it
is easy to appreciate that the color of squares (A) and
(B) is green; even square (A) is brighter than square
(B) the chromaticity does not change; nevertheless, any
person learns that squares (A) and (B) are the same color
with different intensities. Any person can claim that the
color of square (C) is red, and of square (D) is pink, and

that the intensity of both squares is the same. Despite the
chromaticity difference between both squares is small,
any person can notice that the hues of squares (C) and
(D) are not the same, although the intensity is equal.

Once the WBCs are stained, the nuclei are easy to
locate within the blood smear by any person, because the
color of the WBCs contrasts regarding the color of the
other elements of the blood smear. Specifically, what a
person identifies is the chromatic difference of the ele-
ments within the image.

Brief overview of our proposal for the nucleus seg-
mentation of WBCs using chromatic features of the blood
smear follows. The nucleus of the WBCs is segmented by
selecting the pixels whose chromatic variance is high.
Before the chromatic variance is computed, the hues of
the image are normalized by preprocessing the input
images with an unsupervised neural network (NN). This
NN is trained offline with representative hue samples,
such that each neuron of the NN learns to recognize a
specific hue. When the image is preprocessed by the NN,
the chromaticity of the pixels is substituted by the hue
the winning neuron learned to recognize; thereby, certain
robustness to staining variations is achieved and the com-
puting of chromatic variance increased precision.
Besides, by processing the images just by chromatic fea-
tures, the robustness of brightness variation is obtained
to some extent.

We use the HSV space because the color representa-
tion emulates the human perception of color,43 since the
chromaticity and the intensity are decoupled for color
processing.43-47 Note the selection of pixels whose chro-
matic variance is high regarding the hue of the other ele-
ments of the blood smear. The RGB color space is often
employed for color processing because of its sensitivity to
non-uniform illumination,44-46 despite it is not adequate
for color processing; the RGB space can be used because
the images are acquired under controlled illumination
conditions. Therefore, we experimented with both color
spaces and then compared the results obtained.

Previous works that use color data for segmentation
do not use it as a feature and perform mathematical oper-
ations in the color components separately, like intensity
channels, so color components are uncorrelated.

FIGURE 1 Squares (A) and (B) with the same chromaticity

but different intensity; squares (C) and (D) with different

chromaticity with the same intensity
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Furthermore, the color components and the mathemati-
cal operations are selected intuitively. In our proposal,
the hue components are processed as a sole feature with-
out separating them, keeping the correlation of the color
components, so it allows a formal systematic treatment.

The rest of the article is organized as follows: works
addressing the segmentation of WBCs using color infor-
mation are reviewed in Section 2; we present our seg-
mentation approach in Section 3, and the experiments
and metrics to evaluate its performance thru well-known
databases in Section 4. Discussion on the results and
extensive analytical comparison is in Section 5. The arti-
cle closes with Conclusions in Section 6.

2 | PREVIOUS WORKS

Challenges to segmentation of WBCs in an image are that
cells have many variations in shapes, the sizes of the
images are not equal, and illumination conditions fre-
quently vary, among other factors. Previous works use
color information represented in models of RGB, HSI,
CIELAB, among others. One of the main steps to seg-
ment WBCs in images is to locate them precisely.

In reference 19, a set of sliding windows is used along
with a metric to identify the best window that contains a
WBC; metric combines the density of edges using the
Canny with the colors of WBCs. To segment a WBC in an
image, a combination of GrabCut algorithm and dilata-
tion is applied.

Prinyakupt et al.27 highlight the nucleus by the sum
of the R and B channels of the RGB space, and the result
is divided by the value of channel G. The histogram
equalization is applied, and the image is binarized and
used to segment the nucleus; then to remove noise and
fill gaps, morphological dilation is applied to a disc-
shaped structure to join segmented nucleus with the
lobes.

In reference 29, the input image is mapped to the
HSV color space; data are divided in four k-means clus-
ters involving the H and S components; nuclei are seg-
mented by selecting the cluster with the lowest red value.
In reference 32, the WBC area is obtained by converting
the input image to the HSI color space, k-means cluster-
ing is applied to the H component, followed by the
median filter and region growing algorithm. The image
containing the WBC is employed to obtain the nucleus
area, with the S component treated similar. In reference
33, convert the input to grayscale binarized image (Otsu
method), morphological operators are applied by a disc-
shaped structure; the connected components with an axis
length 30% smaller than the average are removed from
the binary image. In reference 34, a color correction pro-
cess using CIELAB color space is made manually; then,

red blood cells and background using Otsu thresholding
and combination of RGB, CMYK, and HSV color space
analysis are applied to segment WBCs; the noise is
removed using a morphological filter and connected com-
ponent labeling. Circle Hough Transform is applied to
detect overlapped cells.

Cao et al.35 use the low-rank representation (LRR)
method to capture the underlying low-dimensional struc-
tures of high-dimensional data. LRR finds a small set of
vectors that represent the data as a linear combination of
them, then detecting first the area of WBC by the optimal
thresholding technique. In reference 37, a method where
the R and G components are replaced from the input
color image by normalized and contrast enhanced G
component; this increases the contrast between the
region of nuclei and the background.

In reference 39, the noise of the RGB input image is
removed using a median filter and a Gaussian filter; the
resulting image is mapped to the CIELAB color space;
then, the chromatic components a* and b* are used to
divide the image into three k-means groups. Nucleus is
segmented by selecting the cluster with the highest inten-
sity of component a* and lowest component of b*. In ref-
erence 40, the input RGB image is mapped to the HSV
image; from the S component, the borders are obtained
with the gradient method, the image is binarized by
thresholding the gradient magnitudes. The proposed bor-
der strength location windows are processed with the
Grabcut method.

Vogado et al.41 convert the input image to the CMYK
and CIELAB color spaces. The contrast of the M compo-
nent and the b* component is adjusted, a median filter is
applied. The WBCs are enhanced by subtracting b* from
the component M. The k-means algorithm divides the
resulting images into nucleus, cytoplasm, and back-
ground. Morphological operations erosion and dilation
are applied.

In reference 42, the B and G channels are subtracted,
negative values are set to zero; thereby, the WBCs are
highlighted. The image is binarized with the Otsu
method and then active contouring is applied. The
binary image is transformed into a distance map by
computing the minimum Euclidean distance between
the pixels of the nucleus area and the background. The
map is used to define markers, where the watershed
algorithm is employed to delimit the area of the
nucleuses.

3 | SEGMENTATION PROPOSAL

Our proposal to process the hue, keeping the correlation
between their components, emulates the human percep-
tion to recognize colors, first by the chromaticity and
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then by the intensity. A person, by means of color, easy
can locate the nucleus of the WBCs, detecting the hue
contrast between the nucleus and the other elements of
the blood smear. We segment the nucleus by selecting
the pixels with high chromatic variance regarding the
components of the blood smear, an easy to implement
approach for WBC segmentation. Also, we use an
unsupervised NN trained offline with representative sam-
ples of different hues, such that each neuron learns to
recognize a specific hue or chromaticity. The pixels are
processed using the NN, and their chromaticity is
substituted by the weight vector of the respective winning
neurons; thus, to recognize, the hue of the winning neu-
rons is learned. The NN usage is twofold, to normalize
the chromaticity of the pixels and to reduce the staining
variations. As a result, computing the chromatic variance
of the pixels earned accuracy. Figure 2 shows a flowchart
summarizing our proposal. The red component of the
colors is set to zero to enhance the hue of the nucleus.
Utilizing the NN, the resulting image is processed with
the reduced number of hues. Finally, the chromatic vari-
ance of the pixels is computed to segment the nucleus of
the WBC.

3.1 | RGB and HSV color spaces

The representation of colors is significant to obtain a pre-
cise color characterization; the RGB space is often
employed because most of the image acquisition hard-
ware uses this space to represent colors. Nevertheless, the
RGB space is not adequate for color processing because
the color differences cannot be computed with the
Euclidean distance since the intensity and chromaticity
are not decoupled.45

However, considering that the images are acquired
under controlled illumination conditions, it is possible to
process the chromaticity. The RGB space is based on the
Cartesian coordinate system, where colors are points
defined by vectors that extend from the origin, see image
(A) of Figure 3. The color of a pixel p is represented as:

ϕp ¼ rp,gp,bp
h i

ð1Þ

Where rp, gp and bp are the red, green and blue compo-
nents of the color vector, respectively. The features of the
color vectors are45:

1. The orientation represents the chromaticity.
2. The magnitude models the intensity.

The number of colors of the RGB space is infinite, but
in the image processing field, the RGB space is

discretized; usually, the range of each component is
0,255½ � �ℤ. On the other hand, the HSV space is more
suitable for color processing: the color representation in
the HSV space resembles the human perception of color
because the chromaticity is decoupled from the inten-
sity.43,45 The HSV space is cone-shaped, as shown in
image (B) of Figure 3. The color of a pixel p in the HSV
space has the components hue (h), saturation (s), and
value (v), that is:

φp ¼ hp,sp,vp
� � ð2Þ

h is the chromaticity, s is the distance to the axis of black-
white, and v is the intensity; h is distributed through the
circumference of the cone so in the range 0,2π½ � �R,
s∈ 0,1½ � interval and v∈ 0,255½ �. The mathematical opera-
tions to map colors between the RGB and HSV color
spaces is given in reference 45.

3.2 | NN training

The unsupervised NN is trained such that each neuron
learns to recognize a specific hue. The NN is fed with the
hue of a pixel then the weight vector of the winning neu-
ron substitutes the chromaticity of the given pixel. The
number of hues the image can have is at most the num-
ber of neurons of the NN.

FIGURE 2 Flowchart of proposed approach

FIGURE 3 Images (A) and (B) show the RGB and HSV color

spaces, respectively
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The training set is built with representative hue sam-
ples; for the RGB space, the reference 46 shows that hue
samples of the inner faces of the RGB cube are represen-
tative enough to train the NN. The training set is built as
follows, the elements of the set Θ are numbers 3 n∈ 0,90½ �
interval:

Θ¼ 3n j 0≤n≤ 30,n∈Zf g ð3Þ

The sets S and C are built computing the sinus and
cosine values of the elements of the set Θ respectively.

S¼ sinθk 8θk∈Θj gf ð4Þ

C¼ cosθk 8θk∈Θj gf ð5Þ

Using the Cartesian product, in the sets P1, P2, and P3

we obtain the color vectors of the inner faces of
the RGB cube for the planes R-G, G-B, and R-B,
respectively.

P1 ¼C�S� 0f g ð6Þ

P2 ¼ 0f g�C�S ð7Þ

P3 ¼ S� 0f g�C ð8Þ

Finally, the training set Pϕ is obtained with:

Pϕ ¼ [3
i¼1

Pi ð9Þ

While for the HSV space, reference 48 shows how the
training set Pφ is built with:

Pφ ¼ cosθk, sinθk½ � j θk ¼ π

128
k : k¼ 0,1,…,255

n o
ð10Þ

For the experiments, we employ both competitive neural
networks (CPNN) and self-organizing maps (SOM),
trained offline using the Kohonen learning rule.49

Processing the image by NN can be regarded as a
color clustering process. The advantages of using an NN,
as we do, regarding clustering techniques such as k-
means or fuzzy c-means, are that such techniques require
a priori the number of groups the data (pixels) are
grouped.47 But the adequate number of groups changes
depending on the image conditions. With the NN, the
number of groups is variable with a limit at the largest
number of colors the NN can recognize, in other words,
the number of neurons of the NN.47

An important remark is that the clustering tech-
niques usually create groups with the same size or

number of elements; for image segmentation, it
implies that small parts within the image are not suc-
cessfully segmented.47 To overcome this restriction,
we use a NN to segment small areas as each pixel is
processed independently from the rest of the image.
Also, the performance of the clustering techniques
depends on the initial values of the centers. With the
NN, after offline training, the NN can be used to pro-
cess any image without training it again, unlike the
clustering techniques.

3.3 | Algorithm

The steps of our proposal are next listed, we present how to
process the colors represented in the RGB space but at the
end of this section, we mention how to process HSV colors.

Let Φ¼ ϕ1,…,ϕmf g�R3 be the set of RGB color vec-
tors of the given image.

1. The red component of the color vectors is set to zero,
ϕ�
i ¼ 0,gi,bi½ �, then all vectors are included in the

set Φ� ¼ ϕ�
1,…,ϕ�

m

� �
.

2. The vectors in the set Φ� are normalized withbϕi ¼ϕ�
i = kϕ�

i k, the resulting vectors form the
set bΦ¼ bϕ1,…,bϕm

n o
.

3. The NN is fed with the elements of the set bΦ, the
weight vectors wk of the winning neurons are
obtained with:

wk ¼ arg maxwi wi � bϕp

� �
ð11Þ

That is, the NN is excited with each element of the set bΦ
and the respective weight vector of the winning neuron is
placed in the set W ¼ w1,…,wmf g.

4. The variance of the elements of the set W is obtained
as follows. The average is computed with
μw ¼Pwk∈Wwk=m; we obtain the covariance matrix
with Ω¼ PPT , where P¼ w1�μw,…,wm�μw½ �. The
variance of the vectors is obtained by computing the
norm of the covariance matrix; that is Ωk k¼ σ2w . The

norm is computed with Ωk k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ΩTΩ
	 
q

, where λ is

the largest eigenvalue of the matrix ΩTΩ.
50

5. The image is binarized, where the pixels with high chro-
matic variance are set to 1, otherwise, they are set to 0:

bk ¼ 1, wk�μwk k2 > σ2w
0, otherwise

(
, 8wk∈W ð12Þ

The pixels that shape the nucleus of the WBCs are those
where bk ¼ 1.
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6. The binary image is processed with a morphological
operator to fill the holes in the WBCs' nucleus,
obtaining the pixels of the binary image b�k.

7. The pixels of the WBC nucleus are obtained with:

ϕ�
k ¼ b�k �ϕ�

k,k¼ 1,…,m ð13Þ

The flowchart of the segmentation algorithm proposed is
shown in Figure 4.

For the HSV colors, the mathematical operations of
the step 3 are performed as follows. The vectors of the setbΦ are mapped to the HSV space, obtaining the vectors
φi ¼ hi,si,vi½ �, i¼ 1,…,m. For each vector φi, the hue
component hi is extracted to build the set

Ψ¼ ψ i ¼ coshi, sinhi½ � i¼ 1,…,mj gf . Analogously, each ele-
ment of the set Ψ is fed to the NN and the respective
weight vector of the winning neuron is placed in the set
W ¼ w1,…,wmf g. Finally, the steps 4-7 are performed.
Notice that in this case the NN used is the one trained
with color samples represented in the HSV space.

4 | EXPERIMENTAL SETUP

For experiments we looked for image databases employed
as a benchmark to test WBC segmentation algorithms.
Different related works employed their own and private
databases, but we found that the most common—and
publicly available—datasets are the following: ALL-IDB
2 contains 260 color images of size 257 � 257, captured
using a PowerShot G5 camera; CellaVision consists of
100 color images of size 300 � 300 and JTSC contains
300 color images of size 120 � 120 collected by the
Jiangxi Tecom Science Corportation.41 It is important to
remark that the brightness and staining conditions in the
images of these databases are quite diverse. We employed
these datasets to test our approach; these databases and
their respective ground truth can be obtained in this
repository*; an image example for each database and
their respective ground truth are shown in Figure 5.

The ground truth images are used to compare them
with the resulting images segmented by our method.
These ground truth images are hand-segmented by
human experts.41 One main purpose is to advance the
efficient automation of this task to diminish human
imprecisions and errors.FIGURE 4 Flowchart of the algorithm proposed

FIGURE 5 Images from the databases employed for experiments and their respective ground truth
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4.1 | Architecture of neural networks

We use competitive neural networks (CPNNs) and self-
organizing maps (SOMs). Two CPNNs are trained with
HSV and RGB color samples that we call CPNNHSV and
CPNNRGB, respectively. Analogously, two SOMs are
trained with HSV and RGB color samples that we call
SOMHSV and SOMRGB. The neurons of SOMs are set in
a 3 � 3 array and the CPNNs have nine neurons. All the
NNs are trained as mentioned in Section 3.2.

The images of Figure 6 show the color feature maps of
the SOMs and CPNNs after training: images (A) and (B) are
the feature maps of the SOMs trained with HSV and RGB
hue samples, respectively. The images (C) and (D) are the fea-
ture maps of the CPNNs trained with HSV and RGB hue
samples, respectively. Each square of the NNs is a neuron
and its color is the hue that each neuron learned to recognize.

The differences between the CPNNs and SOMs are
the architecture and training. The neurons of the SOMs
are set in a 2D-array, while the CPNNs are not
arranged. Although both NNs are trained with the
Kohonen learning rule,49 in the SOMs the weight vec-
tors of the winning neuron and its neighbor neurons
are updated. While in the CPNNs only the weight vec-
tor of the winning neuron is updated.

Figure 7 shows examples of images obtained after
processing the input images of the first row, with
the SOMHSV, CPNNHSV, SOMRGB, and CPNNRGB.
As mentioned in Section 3.3, before the images are processed
by the NNs, the red component of the colors is set to zero.

In the experimental setup in Section 5, also we per-
form experiments where images are segmented by com-
puting only the pixels' chromatic variance of the given
image, but without process them by the NNs. The experi-
ments using the colors in HSV and RGB are referred as
VarHSV and VarRGB, respectively.

4.2 | Evaluation metrics

We evaluated the quality of segmentation by comparing
the binary version of the segmented images obtained
with our approach and the ground truth. The true posi-
tive (TP), false positive (FP), true negative (TN), and false
negative (FN) are computed, see Table 1. Note the
changes in the second and fourth row.

The performance of the proposal was evaluated using
the metrics accuracy (Ac), specificity (Sp), precision (Pr),
sensitivity (Se), and kappa index (K):

Ac¼ TPþTN
TPþTNþFPþFN

ð14Þ

Sp¼ TN
TNþFP

ð15Þ

Pr¼ TP
TPþFP

ð16Þ

Se¼ TP
TPþFN

ð17Þ

K ¼Ac�ρ

1�ρ
ð18Þ

where

ρ¼ TPþFNð Þ� TPþFPð Þþ TNþFNð Þ� TNþFPð Þ
TPþTNþFPþFNð Þ2

ð19Þ

According to reference 51, the accuracy level (AL) of the
segmented images is classified depending on the value of
K as follows:

AL¼

P, K ≤ 0:2

R, 0:2<K ≤ 0:4

G, 0:4<K ≤ 0:6

VG, 0:6<K ≤ 0:8

E, K >0:8

8>>>>>><>>>>>>:
ð20Þ

Here P, R, G, VG, and E indicate Poor, Reasonable, Good,
Very Good, and Excellent, respectively.

The dice coefficient (DC), also known as f-score, is
employed to compute how correctly a leukocyte is seg-
mented. For each segmented leukocyte k, we obtain
DCk with:

DCk ¼ 2TP
2TPþFPþFN

ð21Þ

Due to the dataset contains n leukocytes, ADC is defined
as the average of all theDCk computed for the n leukocytes:

ADC¼ 1
n

Xn
k¼1

DCk ð22Þ

A good segmentation algorithm should have a DC value
above a specific threshold.41 Vogado et al.41 define the
true positive rate metric TPRt for a database as the ratio
of the number of leukocytes that achieves DCk ≥ t to the
total number of leukocytes.

GARCÍA-LAMONT ET AL. 7



FIGURE 7 Real-world examples of results obtained with HSV and RGB figures using unsupervised NNs

FIGURE 6 Color feature maps: images (A) and (B) show the color feature maps of the SOMs trained with HSV and RGB hue samples,

respectively; images (C) and (D) show the color feature maps of the CPNNs trained with HSV and RGB hue samples, respectively
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TPRt ¼#SL
n

ð23Þ

Where SL¼ k jDCk ≥ t,k¼ 1,…,nf g and # denotes the
cardinality of the set. Vogado et al.41 establish that a suc-
cessful segmentation algorithm should detect at least 80%
of the cells with an average DC larger than 0.9; thus, the
threshold value is set to t¼ 0:9.

5 | RESULTS AND DISCUSSION

5.1 | Quantitative evaluation

All the images of the ALL-IDB, CellaVision, and JTSC
databases were processed. Figure 8 shows image exam-
ples of the databases.

Figure 9 shows the resulting images applying our pro-
posal on the images of Figure 8, where the colors are rep-
resented in the HSV space. While Figure 10 shows the

segmented images using our proposal where the colors
are represented in the RGB space.

Tables 2–4 show the quantitative evaluation of our
proposal using the metrics described in Section 4.2. In
Table 2, the highest specificity and precision values are
obtained with CPNNRGB; the highest sensitivity value is
obtained with VarHSV. The best accuracy, kappa index,
ADC, and TPR values are obtained with CPNNHSV. In
all the cases, the K value is greater than 0.8. Therefore,
the performance for all the models can be classified as
excellent, according to Equation (20).

In Table 3, the highest values for specificity and
precision are obtained with the model CPNNRGB.
With VarHSV, the highest sensibility value is
obtained. The model CPNNHSV obtains the highest
values for accuracy, kappa index, ADC, and TPR.
Notice that in all the cases K >0:8, so, according to
Equation (20), the performances for all the models are
classified as excellent.

In Table 4, the model VarHSV obtains the highest
sensibility value. The highest precision and specificity
values are obtained with SOMRGB. While the highest
values for accuracy, kappa index ADC, and TPR are
obtained with VarRGB. According to the values of K,
the performances of the models SOMHSV, CPNNHSV,
SOMRGB, and CPNNRGB are classified as very good
class. The performances of VarHSV and VarRGB can be
classified as excellent.

The best segmentation performances of the images
of the ALL-IDB 2 and CellaVision databases are

TABLE 1 Definition of pixels classified as TP, FP, TN, and FN

Ground truth Classified as

TP WBC WBC

FP Background WBC

TN Background Background

FN WBC Background

FIGURE 8 Examples of images extracted from databases for experiments; images Im233_0 and Im246_0 are extracted from ALL-IDB

2 database; images 044 and 086 are extracted from CellaVision database; images 004 and 226 are extracted from JTSC database
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obtained using the CPNNHSV. The kappa index is
greater than 0.8; therefore, the performances are clas-
sified as excellent. Besides, following the criteria of
Vogado et al.,41 we claim our segmentation approach

is successful since the TPR0.9 value is greater than 0.8
in both databases.

For the JTSC database, the best performance is
obtained with VarRGB. The kappa index is greater

FIGURE 9 Resulting images by processing the images of Figure 8, using our proposal where the colors are represented in the HSV space
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than 0.8; therefore, the image segmentation is classi-
fied as excellent. But also, the segmentation is success-
ful, according to Vogado et al.,41 because the TPR0.9

value is greater than 0.8. Notice that the values of the
metrics obtained with the JTSC database are lower

regarding the values obtained with the ALL-IDB 2 and
CellaVision databases.

In the state-of-the-art on image segmentation, usually,
the algorithms are validated regarding the ground truth,
using the metrics probabilistic random index (PRI),

FIGURE 10 Resulting images by processing the images of Figure 8, using our proposal where the colors are represented in the RGB space
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variation of information (VOI), and global consistency
error (GCE).47,48 Works addressing segmentation of WBCs
validate the segmentation algorithms by evaluating the
classification at pixel-level of the segmented images. The
disadvantage with this approach is that the segmentation
cannot be object-based evaluated. The metric TPRt is sub-
jective, to some extent, since it depends on the threshold t
value, which is set intuitively as a proposal by Vogado
et al.41 With the PRI, VOI, and GCE metrics, it is possible
to object-based evaluate the segmented images.

Let I and S be the ground truth and the segmentation
provided by the algorithm, respectively. The PRI is a
measure of the similarity between two data clusters. The
PRI is computed with:

PRI S, Ið Þ¼ 2
n n�1ð Þ

X
i, j, i< j

pci,ji,j 1�pi,j
� �ci,j ð24Þ

Where n is the number of pixels, ci,j is a Boolean
function: ci,j ¼ 1 if LI

i ¼LSj , ci,j ¼ 0 otherwise, LI
i is the

label of pixel xi in the ground truth and LSj is the label
of pixel xj in the segmented image, and pi,j is the
expected value of the Bernoulli distribution for the
pixel pair.

The VOI index measures the sum of loss of infor-
mation and the gain between two clusters belonging
to the lattice of possible partitions in the follow-
ing way:

VOI S, Ið Þ¼H Sð ÞþH Ið Þ�2F S, Ið Þ ð25Þ

Where H is the entropy �Pc
i¼1 ni=nð Þlog ni=nð Þ, ni being

the number of points belonging to the ith cluster, c is the
number of clusters, and F is the mutual information
between two clusters defined as:

TABLE 2 Results obtained using

the ALL-IDB 2 image database
Method Acc Spe Pre Sen K ADC TPR0.9

SOMHSV 0.9811 0.9899 0.9331 0.9226 0.9169 0.9209 0.8080

CPNNHSV 0.9832 0.9866 0.9159 0.9611 0.9282 0.9342 0.8560

VarHSV 0.9773 0.9753 0.8590 0.9909 0.9071 0.9007 0.7360

SOMRGB 0.9736 0.9935 0.9516 0.8432 0.8791 0.8736 0.7120

CPNNRGB 0.9634 0.9959 0.9650 0.7497 0.8235 0.8019 0.6480

VarRGB 0.9816 0.9811 0.8881 0.9849 0.9234 0.9161 0.7800

The best results are in bold.

TABLE 3 Results obtained by using

the CellaVision image database
Method Acc Spe Pre Sen K ADC TPR0.9

SOMHSV 0.9903 0.9961 0.9646 0.9385 0.9460 0.9518 0.8700

CPNNHSV 0.9920 0.9941 0.9486 0.9731 0.9562 0.9631 0.8800

VarHSV 0.9709 0.9681 0.7782 0.9960 0.8576 0.8884 0.6300

SOMRGB 0.9836 0.9984 0.9837 0.8517 0.9040 0.9040 0.8400

CPNNRGB 0.9761 0.9991 0.9896 0.7716 0.8542 0.8526 0.7800

VarRGB 0.9892 0.9890 0.9104 0.9908 0.9429 0.9461 0.8400

The best results are in bold.

TABLE 4 Results obtained by using

the JTSC image database
Method Acc Spe Pre Sen K ADC TPR0.9

SOMHSV 0.8971 0.8983 0.5515 0.8882 0.6231 0.7611 0.4333

CPNNHSV 0.9473 0.9491 0.7211 0.9347 0.7840 0.8477 0.4967

VarHSV 0.9808 0.9816 0.8821 0.9751 0.9153 0.9259 0.7800

SOMRGB 0.9547 0.9947 0.9465 0.6706 0.7605 0.7633 0.5633

CPNNRGB 0.8992 0.9015 0.5578 0.8832 0.6274 0.7662 0.4167

VarRGB 0.9838 0.9868 0.9110 0.9629 0.9270 0.9388 0.8333

The best results are in bold.
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F S, Ið Þ¼
Xcs
i¼1

XcI
j¼1

ni,j
n
log

ninj
n2

ð26Þ

Where ni,j is the number of points in the intersection of
cluster i of S and j of I; cs and cI are the number of clus-
ters of S and I, respectively.

The GCE computes how a segmented image is viewed
as the refinement of other. A measure of error at each
pixel xi can be written as:

C S, I,xið Þ¼ R S,xið ÞnR I,xið Þj j
R S,xið Þj j ð27Þ

Where �j j is the cardinality, \ is the set difference, and
R S,xið Þ is the set of pixels corresponding to the region in
segmentation S that contains the pixel xi. The measure
enforces all local refinements to be in the same direction,
this is defined as:

GCE S, I,xið Þ¼ 1
n
min

Xn
i¼1

C S, I,xið Þ,
Xn
i¼1

C I,S,xið Þ
 !

ð28Þ

The ranges of the PRI, VOI, and GCE metrics are 0,1½ �,
0,∞½ Þ and 0,1½ �, respectively. The higher the value of PRI,
the better the segmentation is. Similarly, the lower the
value of VOI and GCE, the better the segmentation is
regarding the ground truth.

Tables 5–7 show the average PRI, VOI, and GCE
values obtained by evaluating the segmented images
using the ALL-IDB 2, CellaVision, and JTSC databases,
respectively.

In Table 5, the best values for PRI and VOI are
obtained with the CPNNHSV, while the best value for
GCE is obtained with CPNNRGB. Notice that the values
obtained with the other approaches are close between
them, except for CPNNRGB and VarHSV.

In Table 6, the best values with the three metrics are
obtained with CPNNHSV. Notice that the values
obtained with the other approaches are close between
them, except for CPNNRGB and VarHSV that obtained
the lowest performances for PRI, and VOI and GCE met-
rics, respectively.

In Table 7, the best values for PRI and VOI are
obtained with VarHSV, and for the GCE metric, the best
value is obtained with SOMRGB. The results obtained with
the PRI, VOI, and GCE metrics cannot be compared with
related works addressing WBC segmentation because these
metrics have not been employed to evaluate the resulting
images using other techniques and methods. However,
given the results shown in Tables 5–7, it is easy to appreci-
ate that the object-based evaluation similarity between the
segmented images and the ground truth is high.

5.2 | Comparison with state of the art

From experiments, Tables 8–10 show the performance
comparison between the results of different methods
regarding our proposal on each database. A previous
comprehensive performance comparison with methods
that use the same databases and metrics we do is in the
comparative study of WBC nuclei segmentation.8 We
select the methods that achieved the three highest TPR0.9

values with each one of the databases included in each of
the tables.

In Table 8, the highest values of specificity and K are
obtained in references 32 and 41, respectively; Banik

TABLE 5 Average PRI, VOI, and GCE values obtained by

evaluating the segmented images using the ALL-IDB 2 database

Method PRI VOI GCE

SOMHSV 0.9644 0.1947 0.0282

CPNNHSV 0.9677 0.1892 0.0283

VarHSV 0.9571 0.2288 0.0348

SOMRGB 0.9525 0.2169 0.0283

CPNNRGB 0.9362 0.2455 0.0265

VarRGB 0.9650 0.1973 0.0292

The best results are in bold.

TABLE 6 Average PRI, VOI, and GCE values obtained by

evaluating the segmented images using the CellaVision database

Method PRI VOI GCE

SOMHSV 0.9814 0.1055 0.0144

CPNNHSV 0.9844 0.0944 0.0133

VarHSV 0.9476 0.2293 0.0343

SOMRGB 0.9698 0.1340 0.0151

CPNNRGB 0.9369 0.1708 0.0170

VarRGB 0.9792 0.1180 0.0166

The best results are in bold.

TABLE 7 Average PRI, VOI, and GCE values obtained by

evaluating the segmented images using the JTSC database

Method PRI VOI GCE

SOMHSV 0.8517 0.5193 0.0835

CPNNHSV 0.9116 0.3563 0.0561

VarHSV 0.9634 0.1978 0.0297

SOMRGB 0.9184 0.2950 0.0300

CPNNRGB 0.8557 0.5042 0.0795

VarRGB 0.9688 0.1796 0.0266

The best results are in bold.
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et al.12 obtained the highest values for accuracy, precision
and TPR0.9, while the highest values for sensitivity and
ADC are obtained in reference 29. Nevertheless, the
values obtained with our proposal CPNNHSV are close.
Notice that the results reported by the authors of
reference 37 are obtained using only 160 images of the
ALL-IDB 2.

In Table 9, the highest values of specificity, precision,
sensitivity, and TPR0.9 are obtained in references 39,
40, 41, and 12, respectively. Our model CPNNHSV obtains
the highest values for accuracy, kappa index, and ADC,
but notice that the TPR0.9 value our model obtains is very
close to the respective value obtained in reference 12. In
this table, the references 19, 34, and 40 are also included
for comparison, since these references report their perfor-
mance using the CellaVision database, though they just
report values for precision, sensitivity, and ADC.

Reference 15 reports an ADC value of 0.9209, but this
value is obtained by processing all the images of the
CellaVision and ALL-IDB databases including the images
of the Wadsworth Center,† without separating the images
between databases. In Table 10, the highest values of
accuracy, specificity, kappa index, ADC, and TPR0.9 are
obtained with the model VarRGB. While Vogado et al.41

obtain the highest values for precision and sensitivity.
Notice that most of the works we employ for compari-

son use clustering techniques, mainly k-means.29,32,39,41

But data clustering is influenced by the initial values of
the groups' centers and the user must define a priori the
number of groups. It means that the segmentation may
be different if the given image is processed several times
with the same algorithm. Using the NNs we propose as a
clustering process, the advantage is that the NNs are
trained just once; and they can be employed to segment

TABLE 9 Comparison of results

using the CellaVision database
Method Acc Spe Pre Sen K ADC TPR0.9

Banik et al.12 0.9886 0.9898 0.9175 0.9809 0.9300 0.9400 0.9000

Liu et al.19 - - 0.9818 0.8592 - 0.9165 -

Safuan et al.34 - - 0.9781 0.8617 - 0.9161 -

Sarrafzadeh et al.39 0.9817 0.9960 0.8665 0.9799 0.9111 0.9212 0.7600

Sudha et al.40 - - 0.9963 0.8791 - 0.9341 -

Vogado et al.41 0.9877 0.8939 0.9788 0.9975 0.9254 0.9322 0.8700

Arslan et al.42 0.9795 0.9940 0.8698 0.9779 0.9073 0.9176 0.7800

CPNNHSV 0.9920 0.9941 0.9486 0.9731 0.9562 0.9631 0.8800

The best results are in bold.

TABLE 10 Comparison of results

using the JTSC database
Method Acc Spe Pre Sen K ADC TPR0.9

Banik et al.12 0.9757 0.9792 0.8763 0.9608 0.8900 0.9100 0.7366

Prinyakupt et al.27 0.9611 0.8652 0.8635 0.9779 0.8290 0.8465 0.6066

Kumar et al.29 0.9677 0.8186 0.9343 0.9897 0.8474 0.8653 0.4666

Vogado et al.41 0.9713 0.8318 0.9355 0.9899 0.8605 0.8768 0.5233

VarRGB 0.9838 0.9868 0.9110 0.9629 0.9270 0.9388 0.8333

The best results are in bold.

TABLE 8 Comparison of results

using the ALL-IDB2 database
Method Acc Spe Pre Sen K ADC TPR0.9

Banik et al.12 0.9861 0.9933 0.9635 0.9380 0.9300 0.9400 0.9115

Kumar et al.29 0.9854 0.9710 0.9189 0.9873 0.9339 0.9426 0.8960

Nasir et al.32 0.9781 0.9948 0.9600 0.8870 0.9030 0.9153 0.7307

Hedge et al.37 0.9900 - 0.9600 0.9700 - 0.9700 -

Vogado et al.41 0.9859 0.9862 0.9124 0.9809 0.9342 0.9417 0.8760

CPNNHSV 0.9832 0.9866 0.9159 0.9611 0.9282 0.9342 0.8560

The best results are in bold.
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the images without training them again. As a result, the
segmentation consistency increases.

Note that the lowest metric values are obtained by
processing the JTSC database, for our models and the
related works too. The explanation is that the quality
of images of this database is lower than the images of
the ALL-IDB 2 and CellaVision databases, so more dif-
ficult to process. On the other hand, the image quality
of the ALL-IDB 2 and CellaVision databases is better,
so the metric values obtained are higher using these
databases. Nonetheless, with our model VarRGB, we
obtain the highest K, ADC, and TPR0.9 values in the
experiments using the JTSC database, as a useful
advantage.

5.3 | Chromaticity as a proper
characteristic

The methods presented in previous works employ differ-
ent color spaces to segment the nucleus of WBCs. But the
chromaticity is not processed as a feature since the color
components are processed separately, uncorrelated.
Table 11 shows the color spaces employed to process the
color data and the color components used to perform
mathematical operations for segmentation in the refer-
ences we employed to compare our results in Section 5.2.

The methods of Table 11 segment the nuclei by per-
forming mathematical operations between the color com-
ponents or in a specific color channel, as if they were
intensity channels. Therefore, the hue is not processed
adequately because the correlation between the color com-
ponents is lost. Also, mostly, the color channels and math-
ematical operations are selected intuitively. For instance,
in references 27 and 42, the Otsu method, a technique
developed to process intensity, is applied to each color
component separately. Therefore, the color is processed
without being correlated with the color components.

Unlike the previous works, we employ the chroma-
ticity as a proper characteristic; if normalizing the
RGB color vectors, just the chromaticity is processed.
While in the HSV space, the component H is modeled
as unit-length vectors of two elements. In both cases,
the hue is processed using matrix operations without
losing the correlation between the hue components
given the vectorial representation we employ to model
the chromaticity.

Notice that several of the methods quoted in Table 11
employ the k-means technique. As mentioned before, the
clustering techniques tend to create groups with the same
size or number of elements; for image segmentation,
small parts within the image are not segmented success-
fully. But also, the performance of the clustering

TABLE 11 Color spaces employed, and color components

within mathematical operations for segmentation in related works

Reference Color space

Components employed
and operations
performed

Liu et al.19 L*a*b* Histograms of each
channel

Prinyakupt
et al.27

RGB G values divided by the
sum of the average
values of the R and B
components

Kumar
et al.29

HSV K-means in H and S
components using four
clusters, the cluster with
smallest red value
represents the nucleus
region

Nasir
et al.32

HSI K-means is applied to the
H component, then
median filter and
growing algorithm are
applied; the S
component is subject to
the same sequence of
actions

Safuan
et al.34

RGB, CMYK,
HSV, L*a*b*

S-G, C-G, S-C, H-Y;
components L*, a*, and
b* are used, separately,
for image preprocessing

Sarrafzadeh
et al.39

L*a*b* K-means is used in
components a* and b* to
divide the image in
three clusters. The
cluster with the highest
intensity component of
a* and smallest of
component b* is labeled
as the nucleus

Sudha
et al.40

HSV Edge strength-based
location detection and
fine segmentation using
Grabcut approach are
applied to the S
component

Vogado
et al.41

CMYK, L*a*b* K-means is applied to the
resulting channel after
subtracting channels M
and b

Arslan
et al.42

RGB Subtraction of channels B
and G, negative values
are given a value of
zero; the image is
binarized with the Otsu
method and then
watershed algorithm is
applied
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techniques depends on the initial values of the centers.
As well note that clustering techniques require, a priori,
the number of groups the data (pixels) are grouped; but
the convenient number of groups changes depending on
the image conditions. With the NN, the number of
groups is variable being maximum the number of colors
the NN can recognize, so, the number of neurons of the
NN.47 As well, small parts can be segmented using the
NN because each pixel is processed independently from
the rest of the image. Besides, once the NN is trained, it
can be employed to process any image without training it
again, unlike the clustering techniques.

Recently, convolutional neural networks (CNNs) to seg-
ment the nucleus of WBCs are proposed.9,11-14,52,53 Each of
these works performs experiments using their own and pri-
vate image databases; they do not employ standard bench-
marks and their results cannot be proper compared.
Besides, the robustness of the CNN to brightness and
staining variations is not discussed because the images they
employ are captured under the same illumination and
staining conditions. Only12 use CNN that perform experi-
ments with the same image databases we use. Tables 8–10
show that the results we got are close or even better than
the results reported in.12 It is well known that the computa-
tional load of CNN is too high.52,53 On the opposite, for sim-
ilar and even improved performances, the computational
load of our proposal's implementation is low.

On the other hand, the size of the convolutional neu-
ral networks is fixed depending on, partially, the size of
the input images. Due to the different sizes of the images
in the three image databases employed for experiments,
the images must be resized to fit the size of the input
layer of the convolutional neural network. Hence, the
quality of the image may be degraded, although in refer-
ence 12 nothing is mentioned about this aspect. With our
approach, image resizing is not necessary.

The CNN trained with the class of supervised algo-
rithms have shown efficiency for image processing. This
class of CNN requires a huge amount of diverse represen-
tative images to achieve a robust learning so perform the
expected task. These CNNs performance strongly
depends on the number and kind of training images.52

Besides, most of the databases are not large enough to
train a CNN, and the number of images per WBC class is
imbalanced; hence, different works employ synthetic
data to train the CNN.53 All the mentioned processes
bring huge load of computational operations.52,53

We propose to locate the nucleus of the WBCs by the
staining contrast between them and the other elements
of the blood smear. The WBC nucleus segmentation
select the pixels with high chromatic variance (within a
kind of unsupervised learning); the segmentation before
hue staining and brightness variations is efficient: the

NN is not trained to recognize a specific color but con-
centrates to enhance the color with high chromatic vari-
ance. This flexible method emulates the human
perception of color.48 In addition, the noticeably minor
number of operations, regarding the common machine
learning methods that use deep or convolutional NN,
brings the advantage of quite low computational cost.

Notice that the brightness and staining conditions are
different in each of the database. Notably, in the JTSC data-
base the quality of the images is lower than the images of
the ALL-IDB 2 and CellaVision ones. Processing the images
by the chromatic features the robustness to brightness con-
ditions increases. Besides, by processing the images with
the NNs the hue is normalized, and the robustness of
staining conditions is improved too. Both improvements are
regarding the state-of-the-art methods.

6 | CONCLUSIONS

From our proposed segmentation, more efficient WBC
recognition is enabled. This WBC nucleus segmentation
in blood smear images uses chromatic features, emulat-
ing the human perception of color. The pixels with high
chromatic variance are selected to enable the nucleus
segmentation. A nine-neuron competitive neural net-
work and a 3 � 3-neuron self-organizing map were
trained offline with hue samples of different colors. As a
result, more precisely compute the chromatic variance
for WBC recognition. Certain robustness to brightness
conditions is achieved by processing the images by chro-
matic features. Also, processing the hue with the pro-
posed neural networks, an advance on robustness to
staining variations is achieved. The results obtained also
show that the segmentation is precise and consistent
when the colors are processed using the HSV space.
Unlike previous works, in our approach the hue compo-
nents are jointly processed, regarding the correlation
between the hue components, within a quite systematic
formal sequence. By comparing our results using the
accuracy, specificity, precision, sensitivity, kappa index,
average dice coefficient, and true positive rate metrics,
our proposal obtains competitive results regarding previ-
ous related works, and notoriously higher in some cases.
The segmentation is classified as excellent regarding the
kappa index values obtained from the databases used.
Also, our segmentation approach successfully detects
more than 80% of the cells with an average dice coeffi-
cient larger than 0.9. Considering the results obtained
with the object-based evaluation using the probabilistic
random index, variation of information and global con-
sistency error metrics, we establish that the similitude
between the segmented images and the ground truth is
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high. Henceforth, the proposed method is competitive in
the state of the art, tested through standard datasets and
benchmarks.
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