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Abstract: An automatic recognition method of nine atomic species through en-
semble classifiers based on decision trees from experimental data collected by op-
tical emission spectroscopy (OES) is presented. Experimental spectra were ob-
tained from OES of an atmospheric pressure non-thermal plasma (APNTP) 
generated in parallel circular plates dielectric barrier discharge reactor (DBDR). 
APNTP’s emission was detected and acquired by a monochromator coupled to a 
photomultiplier and a data acquisition system. Data were organized in columns as 
relative intensity versus wavelength to generate a synthetic spectra dataset. The 
performance categorization of candidate classifiers was assessed using the F1 met-
ric; after that, the grid-search hyperparameter optimization technique allowed the 
selection of the best combination to construct the final ensemble classifier. After 
the generation of the synthetic spectra dataset, they were evaluated using paramet-
ric statistics with analysis of variance (ANOVA) and non-parametric statistics 
with Friedman’s tests. Subsequently, the critical distance was obtained by Ne-
menyi parametric profile, showing the best-classified groups with prediction accu-
racy of the species between 93% and 100% and a confidence value of 95% in the 
wavelength range from 200 to 890 nm. Finally, the automatic atomic species 
recognition test was carried out utilizing a set of nine files, each one 
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corresponding to an experimental spectrum obtained from an APNTP generated in 
three different argon-oxygen gas mixtures, where Ar I, O I, and O II species with 
predictions range from 73% to 100% (86.5 % mean). Further, the proposed 
method could be trained to analyze various species generated by some other type 
of electric discharge. 

Keyword Machine learning; parametric and non-parametric statistics; optical 
emission spectroscopy; atmospheric pressure non-thermal plasma 

1. Introduction 

Atmospheric pressure non-thermal plasma (APNTP), also known as cold atmos-
pheric plasma (CAP), is a weakly ionized gas resulting from the supply of a high 
alternating electric field between two electrodes separated by at least one layer of 
dielectric material and a gap [1, 2, 3]. This kind of plasma exhibits an interesting 
differential species temperature behavior, where the average temperature of elec-
trons (Te) is higher than that of heavy species (Tg). It has been noted that Tg is 
comprised in the temperature range from 20°C to 150°C [4, 5]. 

Applications of APNTP in environmental technology have an essential role in 
the abatement of recalcitrant pollutants, promoting their degradation by way of 
different chemical reactions in gases and liquids [6, 7, 8, 9]. Also, APNTP contrib-
utes as an emerging field in medical applications [10, 11], which has led to rele-
vant innovations in the area, for instance: wound healing [12, 13], materials sur-
face sterilization [14], blood coagulation [15], cancer treatment [16], skin 
treatment [17], biological medicine [18], food [19], among others [20, 21, 22]. 

Optical emission spectroscopy (OES) is a technique that detects the light emitted 
from different sources like stars, natural and laboratory-made plasmas, flames, 
electric discharges, etc. OES is a non-invasive method that provides the identity of 
excited chemical species of the source in function of the optical emission spec-
trum’s wavelength; meanwhile, the spectrum intensity is proportional to the num-
ber of excited atoms or molecules of the present element. OES obtained from elec-
tromagnetic radiation comprehended in the wavelength range of 200 to 890 nm is 
a rich data source that exhibits photon emissions at specific wavelengths from dif-
ferent species of atomic elements and molecules [23, 24]. Through this procedure, 
the species contained in the resulting spectrum can be identified. In addition, 
based on several spectrum characteristics and applying diverse physic-chemical 
models, it is possible to calculate other parameters of the analyzed light source, 
such as electronic, vibrational, rotational temperature, and density of chemical 
species [25, 26, 27, 28]. 

OES is utilized for characterizing plasma discharges allowing us to know their 
typical parameters; for instance, the excitation temperature using the different 
spectral lines of a plasma can be estimated by the Boltzmann equation. In some 
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studies, the database of species and elements of the National Institute of Standards 
and Technology (NIST) is consulted [29]. 

In the literature, some artificial intelligence algorithms with back propagation ar-
tificial neural networks were implemented to identify 28 gamma ray isotopes to 
perform the automatic characterization of species. By using artificial neural net-
works (ANN) configured with 47 input neurons, 52 hidden layers, and 26 output 
neurons (where each one corresponds to a radioisotope), the ANN was trained 
with 409 input data sets and a total number of iterations of 500,000. As a result, 
isotope species identification achieves from 0.21 to 0.99 (due to external noise 
measurements) after carrying out 500,000 total iterations [30]. 

In this regard, the use of Machine Learning algorithms, such as decision trees, is 
proposed for the characterization of species with a local repository of species data 
reported by NIST, and a graphical user interface, to reduce and perform local que-
ries for research. Thus, considering the importance of spectroscopy as a scientific 
tool for the study of plasmas, in this work, we propose to implement an automatic 
recognition method to predict the lines of nine atomic species (five at energy level 
I and four at energy level II) from experimental data collected by optical emission 
spectroscopy using ensemble-classifiers based on decision trees. 

This system estimates the electronic temperature at the line of an element spe-
cies by user intervention choosing three points: first is a maximum equivalent to 
the observed wavelength, and second two minimums as a base. After that, the area 
under the curve is computed by the trapezoid method, and a filter is used to 
smooth the curve. Finally, the electronic temperature is interpolated at least twice 
to reduce the estimation error [31]. 

1.1 Motivation 

The need to improve the analysis not only in the species lines identification but 
also to calculate excitation temperature (among others) in spectra obtained from 
non-thermal plasmas reduces tasks and time for the user. This goal can be 
achieved by implementing proper machine learning (ML) techniques and a correct 
methodology to design and test the algorithm. A recurring problem in the applica-
tion of ML techniques is unbalanced data. A study shows that decision trees with 
this type of data cause poor performance and proposes using Hellinger's distance 
as a corrective action, giving rise to nodes with higher-purity leaves. Hellinger's 
distance is used to quantify the similarity between two probability distributions 
[32]. Another problem in decision trees is overfitting; to solve it, there are pruning 
techniques. Besides, some tests based on the Weka software and decision trees 
show that pre-pruning limits the tree construction parameters, such as depth and 
number of observations. In post-pruning, the tree is designed first; later, the struc-
ture of the generated tree is analyzed, and the pruning proceeds [33]. These proce-
dures aim to generalize the classification structure by reducing excessive complex-
ity and then using it for new data and obtaining better predictions. 
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The choice of programming language is essential. Python is a multi-paradigm 
programming language; its main features are fast enough, flexible, expressive syn-
tax, open source, cross-platform, portable, extensible, dynamically typed, modu-
lar, and general purpose. It also has general-purpose libraries with a scientific 
computing-oriented approach, such as NumPy, SciPy, SymPy, Pandas, Matplotlib, 
and Scikit-learn, which can interact with each other to generate powerful and 
high-quality applications. Another tool is Jupyter Lab; it is a work environment 
for programming languages such as Julia, Python, and R, among others. Its main 
features are the execution of code in cells, its own markup language, and interac-
tivity. Moreover, its main advantage is the agile development of prototypes. Some 
drawback is the impossibility of using Jupyter's ipywidgets to create executable 
files as end-user applications. However, free software alternatives such as Tkinter, 
WxPython, and PyQt, among others, are used instead [34, 35, 36, 37, 38]. 

Taking expert considerations into account, the model generated with ML as an 
automatic identification tool performs; a) data pre-processing, b) line balancing of 
the species considered, c) estimation of the amount of data used in training, d) hy-
perparameter search, e) determination of the step size, width, and temperature of 
the generated synthetic spectra, f) optical shift correction of the experimental spec-
trum, and g) acquisition parameters of the spectrometer used. Moreover, as men-
tioned in previous paragraphs, Hellinger’s technique (the last one suitable for un-
balanced data) is used to improve the classifiers based on decision trees, but in our 
case, data balancing was performed with random oversampling at issue species. 
Because the choice species requires the expertise and experience of the user, a 
graphical interface is additionally created; it should be noted that the design of this 
interface is not presented in this work. In addition, a method for automatically es-
timating electronic excitation temperature is presented with all the parameters re-
ported in the NIST online database. 

Finally, the authors present through this work a contribution of supervised learn-
ing algorithms, based on criteria from previous studies, providing tools for the 
analysis of plasma discharges like the non-thermal plasma via optical emission 
spectroscopy technique, leaving as background information the use of ML in this 
area of knowledge. 

2. Automatic recognition with Machine Learning 

The automatic characterization of element species in spectra from cold plasma re-
quires a sequence of steps detailed in methodology section 3. Whereas in Section 
2.1, the theoretical concepts of optical emission spectroscopy and plasma tempera-
ture estimation equations are described. It is relevant to mention that automatic 
characterization refers to the fact that once an experimental spectrum has been 
loaded, optical shift correction, continuous background correction, peak detection, 
and species prediction are executed without user intervention. 
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2.1 Optical Emission Spectroscopy 

Many techniques and instrumentation are currently available for the analysis and 
diagnosis of APNTP. A wide review of advances in atomic spectrometry and re-
lated techniques is presented in State of the Art by E. Hywel Evans et al. (2020), 
where about 194 references show developments in atomic spectrometry published 
from 2020 to 2021 [39]. The authors present an update on atomic spectrometry, a 
review of trends in atomic spectrometry, and related techniques. From this, it can 
be concluded the importance of plasma diagnosis through one or several tech-
niques, as well as the requirement of specific software and plasma analysis, either 
atomic or molecular [40, 41, 42]. 

Optical emission spectroscopy is a non-invasive technique; therefore, it does not 
modify the characteristics of the plasma source for the species characterization of 
excited or ionized gasses [27]. For instance, this technique estimates the excitation 
temperature in the different spectral lines of argon and neon gas-produced plasma 
[28]. A typical way of identifying species manually by the user is by capturing 
light radiation emitted by a plasma source through optic fiber, a spectrometer, 
computer equipment, and software. This generates a representative spectral data 
file to identify the species and calculate its electronic, vibrational, rotational tem-
perature, and density. In a case study, these parameters are calculated through the 
Boltzmann equation in plasma sources with mixed gasses of acetylene and air. 
Then, from a spectral line, the SigmaPlot software calculates the linear regression; 
this technique verifies the correspondence between the temperature found and the 
species under study [22]. 

Considering an approach of equilibrium state, the Boltzmann equation (1) can be 
used to estimate the temperature of a plasma from its experimental spectrum. 
Mainly, a method to estimate this temperature is by identifying the characteristic 
emission lines for a specific atomic element in the optical emission spectrum 
based on Boltzmann's plot method [31]. 

𝑙𝑛 ቀ𝑰𝒌𝒊∙𝝀𝒌𝒊
஺ೖ೔∙௚ೖ

ቁ = − ாೖ
𝒌𝑩∙்

                                             (1) 

where subindex k is the upper energy level (integer), subindex i is the lower en-
ergy level (integer), Iki is the emission intensity from the k energy level to the i en-
ergy level (a.u.), λki is the corresponding wavelength (nm), Aki is the transition 
probability function (s-1), gk is the statistical weight (a.u.), Ek is the electronic en-
ergy for the considered upper energy level (eV), kB is the Boltzmann constant 
(8.6173×10-5 eV/K) and, T is the temperature (K). 

Spectra from OES are commonly obtained as data blocks recorded as relative in-
tensity versus wavelength. This information can be processed by some software 
tools which the user can manipulate and interpret data. Table 1 summarizes differ-
ent software, either licensed or free, capable of studying, analyzing, and 
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characterizing matter via spectroscopy techniques. In this regard, the need for soft-
ware, whether free or licensed, plays an important role in plasma diagnosis [22, 
26, 27, 43, 44, 45, 46, 47, 48]. 

This is largely due to the increase in programming languages such as Julia, R, 
and Python, the latter being one of the most widely used to perform scientific al-
gorithms largely with SciPy 1.0, as documented in the contributions up to the year 
2020 by Virtanen et al. (2020). 
Table 1 Different software to study, analyze, and characterize matter based on spectroscopy 
techniques. 

Reference Focus on appli-
cation 

Technique imple-
mented 

Software 
name 

Type 
of li-
cens
e 

Welz et al. 
(2015) [22] 

Cold atmos-
pheric plasma 
analysis 

Non mentioned SigmaPlot 
version 12.0 

Li-
cens
ed 

Indrajit et al. 
(2011) [26] 

Study for deter-
mination of 
heavy metals in 
fish species 

Optical emission 
spectroscopy 

21 CFR 11 
version 4.1.0 

Li-
cens
ed 

Kolpaková et 
al. (2011) 
[27] 

Displaying 
measured emis-
sion spectra and 
identification of 
spectrum lines in 
glow discharge 

Optical emission 
spectroscopy 
 

Spectrum An-
alyzer 

Li-
cens
ed 

Abbasi et al. 
(2015) [43] 

Atmospheric-
pressure plasma 
jet 

Optical emission 
spectroscopy 

Specair Free 

Gajdošík et 
al. (2021) 
[44] 

Measuring glu-
tamate and glu-
tamine (Glx) and 
gamma-amino-
butyric acid 
(GABA) 

Magnetic reso-
nance spectros-
copy 

Inspector Free 

McManus et 
al. (2017) 
[46] 

Authentication 
of materials 

Laser-induced 
breakdown spec-
troscopy 

Quantagenet-
ics® 

Li-
cens
ed 

Navrátil et al. 
(2006) [47] 

Spectra of vari-
ous RF dis-
charges in pure 
neon 

Optical emission 
spectroscopy 

Non men-
tioned 

Free 



Machine Learning for identifying atomic species from optical emission spectra  7 

Oeltzschner 
et al. (2020) 
[48] 

Non mentioned Magnetic reso-
nance spectros-
copy 

Osprey Free 

As mentioned above, the estimation of plasma temperature is an important diag-
nostic parameter. Estimating the temperature of the species requires the 
knowledge and expertise of the user. To calculate this, the intensity and wave-
length characteristics of each line of the species are required and then compared 
with the data reported in NIST. For this, it is necessary to consider a partial local 
thermodynamic equilibrium where the plasma temperature could be estimated 
from the Boltzmann plot [31]. The latter is based on a sage selection of groups of 
emission lines sufficiently spaced in energy values. In such a way that the NIST 
data corresponding to the species identified by the lines of the optical emission 
spectrum are downloaded to be entered into the next expression derived from Eq. 
(1). 

𝑦 = 𝑙𝑛 ቀ𝑰𝒌𝒊∙𝝀𝒌𝒊
஺ೖ೔∙௚ೖ

ቁ                                                 (2) 

Thus, 

𝑚 = ଵ
𝒌𝑩∙்

                                                     (3) 

Then plotting Eq. (2) with a linear regression against the energy corresponding 
to each considered wavelength, a straight line with slope m is generated so that the 
temperature T is obtained from Eq. (3). The result of this procedure is depicted in 
the plot of Fig. 1. 

It should be noted that the lines selected to estimate the electronic excitation 
temperature must verify the next conditions: 
1. Belonging to the same element. 
2. Emission line groups are sufficiently spaced in energy values. 
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Fig. 1 Experimental electronic excitation temperature. 

2.2 Characterization techniques based on Machine Learning 

Machine Learning is an area of knowledge of Artificial Intelligence (AI), which 
through algorithmic and statistical inference, can find the pattern of a dataset. For 
this process, training data is used as input, for instance, in an algorithm. Then, a 
fitting model is created for the data, and finally, the output of the model is com-
pared with the test data to evaluate its performance. Currently, the use of ML in 
pattern recognition, specifically in the application of spectroscopy, has increased 
because it allows the study and analysis to be more accurate and reduces expert er-
ror. 

However, sometimes ML techniques are implemented with supervised 
knowledge that can be provided by decision trees, allowing automatic recognition 
by classifying datasets with previous data treatment. For instance, studies concern-
ing spectrum analysis with different fields of application using algorithms are 
based on decision trees. In the study presented by O. Miettinen (2018), the classi-
fication of stellar objects with eight algorithms shows that the highest prediction 
percentages are achieved using the technique named Random Forest with 81 % 
and Gradient Boosting with 82 %. Results are obtained with 80 % data training 
and the 20 % remaining for testing with the use of 10-fold cross-validation on 
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unbalanced data whose range of proportion in the class to be predicted ranges 
from 1 % to 37.95 %. It is worth noting the influence of the reduced number of 
features to minimize overfitting and increase prediction accuracy [49]. Other en-
semble systems like random forest and coarse Gaussian support vector machine 
classifiers were implemented for automatic galaxy classification using 4.4 million 
archives of spectroscopy study, achieving a prediction detection of 0.992 [50]. 

Other studies implement a neural network (NN) with forward propagation and 
error backpropagation training to a dataset of 22 spectra from organic samples (18 
for training and 4 for testing) and 37 aerosol spectra (29 for training and 8 for test-
ing) for automatic recognition, where one NN is used for each chemical element 
of interest [30]. 

A consistent problem in ML is the unbalanced data set; some studies showed 
that the bias toward the majority class could be reduced with decision tree classifi-
ers (DTC), using algorithms insensitive to class size and generating statistically 
significant rules. Some authors propose measurement techniques such as CCP 
(new measure, class confidence proportion) and branch pruning. Through these 
two fundamental changes, a classifier that performs statistically better on classifi-
ers can be assembled using typical decision tree techniques [32]. A SMOTE draw-
back is that an oversampling creates data samples that do not exist, like interpola-
tion, which is not an appropriate technique for this type of problem because it 
would generate synthetic values unrelated to the data reported at NIST. Methods 
based on DTC are the boosting algorithms like gradient boosting classifier, Ada-
Boost classifier, and extreme gradient boosting classifier. These usually get better 
predictions than those typically implemented only with DTC because they im-
prove internal error correction. Conversely, their computational consumption cost 
in training times is considerably higher than other algorithms [51, 52]. So, recently 
algorithms based on supervised and unsupervised learning have been widely used 
in scientific computing [53] and have been implemented in experimental spectros-
copy for diagnosis and analysis [54, 55]. 

In Table 2, the state-of-the-art Machine Learning techniques applied to optical 
emission spectroscopy for plasma discharge applications are included. It can be 
established from the diversity of proposed methods, developed databases, and ob-
tained results that: Machine Learning techniques are applied through either super-
vised or unsupervised algorithms. The datasets on which they carry out the identi-
fication of atomic species or molecules are obtained from the optical emission 
spectroscopy technique. The experimental results obtained for the validation of the 
different works are performance measures, critical indicators, and accuracy. The 
contributions mentioned range from complete systems such as software and some 
type of platform to own methodologies to predict chemical species in OES and 
other parameters of plasma discharges. In this regard, it can be established that the 
proposed method is comparable with related works since the identification of nine 
atomic species is presented from experimental OES of data acquired from an ex-
perimentally generated non-thermal plasma. 

In addition, some observations in works cited in Table 2 are highlighted below: 
1. The t-SNE method is used in unsupervised learning with clustering tech-

niques [56]. 



10  Rosales Martínez et al.  

2. The PCA method is applied to join and correlate project features. Also, the 
authors only used the expected wavelength and energy level, so PCA is not en-
tirely appropriate [57, 58]. 

3. Some authors require large datasets for training, although running many 
experiments is expensive [59, 60]. 

4. The CNN are implemented for image identification and classification; 
the spectra are treated as maps [59, 61]. 

Finally, in relation to our proposal, the accuracy of the species prediction is be-
tween 93% and 100%, associated with a confidence value of 95% for the wave-
length range from 200 to 890 nm (which is larger than that of one cited in Table 
2), and for the nine species considered using synthetic data (972 spectra) the aver-
age accuracy for all classes at 95% confidence intervals is reached, the minimum 
accuracy with a mean of 0.93905 for Hg I at = 0.028 nm, and the maximum for N 
I, N II, and O I, at mean accuracy of 1.0 for at least one step size (Fig. 14). Fur-
thermore, the proposed method could be trained to analyze other kinds of species 
generated by any other type of electric discharge utilizing data from NIST. 
Table 2 State-of-the-art contributions of implemented Machine Learning techniques in optical 
emission spectroscopy for cold plasma applications. 

Related 
work 
refer-
ence 

Main 
characteris-
tics 

Methods Instances 
or 
databases 

Results Contribu-
tions 

Chen, 
H.F. et 
al. 
(2023) 
[56] 

A novel 
manifold 
learning and 
tree-based 
ensemble 
classifier to 
predict re-
sidual stress 
of an alumi-
num nitride 
thin-film. 

An unsuper-
vised learn-
ing uniform 
manifold ap-
proximation 
and projec-
tion and t-
distributed 
stochastic 
neighbor-
hood embed-
ding (t-SNE) 
were imple-
mented. Af-
ter dimen-
sionality 
reduction, a 
tree-based 
ensemble 
model is 
trained and 
evaluated. 

Data are 
available 
in the 
supple-
mentary 
material 
of the 
proposal. 

The results 
of perfor-
mance 
measure-
ment were 
true posi-
tive (TP) 
34.32%, 
false posi-
tive (FP) 
0.21%, 
and false 
negative 
(FN) 
0.71%. 
Moreover, 
the critical 
indicators 
values ob-
tained are 
recall 
0.9797, 
precision 

A data-
driven rec-
ognizing 
system for 
AlN thin 
film resid-
ual stress 
by using 
manifold 
learning to 
pre-pro-
cess OES 
data. 
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0.9939, 
and F1-
score 
0.9867. 

Carter, 
J. A. et 
al. 
(2021) 
[57] 

Evaluation 
of matrix ef-
fects caused 
by carbon 
and easily 
ionizable el-
ements by 
machine 
learning 
tools in in-
ductively 
coupled 
plasma opti-
cal emission 
spectrometry 
(OES) 

Principal 
component 
analysis by 
supervised 
and unsuper-
vised ma-
chine learn-
ing models 
training data 
via five rep-
etitions of 
10-fold 
cross-valida-
tion. 

A dataset 
of 75/25 
train/test 
data split.  

The best 
predictive 
results of 
accuracy 
and R2 
found 
were 0.970 
and 0.856, 
respec-
tively. 

A poten-
tial ML 
predictor-
based soft-
ware capa-
ble of 
alerting 
users in 
real-time. 

Raba-
sovic, 
M.S. et 
al. 
(2022) 
[58] 

Machine 
Learning al-
gorithms to 
classify opti-
cal emission 
spectroscopy 
of plasmas at 
different 
electron 
temperatures 
and excita-
tion ener-
gies. 

Principal 
Component 
Algorithms 
to reduce the 
dimensional-
ity of the 
problem and 
clustering al-
gorithms for 
the plasma 
electron 
temperature 
estimation. 

Data are 
available 
in the 
supple-
mentary 
material 
of this 
work.  

It is re-
ported 
classifica-
tion of op-
tical spec-
tra of 
plasmas at 
different 
electron 
tempera-
tures ob-
tained 
with di-
verse exci-
tation en-
ergies 
based on 
several 
clustering 
algorithms 
is re-
ported. 

Training 
computer 
software 
to recog-
nize the 
spectra 
provided 
by a laser-
triggered 
electric 
discharge 
spark at 
different 
electron 
tempera-
tures by 
clustering 
algo-
rithms. 

Wang, 
C.Y. et 
al. 

Real-time 
detection of 
volatile or-
ganic 

VOC moni-
toring and 
detection is 
based on 

A total of 
64.000 
spectra in 
the 

CNN 
model is 
trained to 
classify 

An alert 
platform 
sends an 
instant 
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(2021) 
[59] 

compounds 
(VOC) de-
tection and 
classification 
using optical 
emission 
spectroscopy 
(OES) of 
plasma by a 
convolu-
tional neural 
network 
(CNN). 

OES previ-
ously ac-
quired for 5 
seconds. 
Later the 
CNN is 
trained by 
extracting 
the charac-
teristics 
from spectra 
to determine 
the critical 
spectra acti-
vating an 
alert at the 
user plat-
form. 

wave-
length 
range of 
300-685 
nm were 
acquired. 

volatile or-
ganic 
com-
pounds 
with an ac-
curacy of 
99.9%. 
 

message 
via email 
when a 
volatile or-
ganic 
compound 
is de-
tected. The 
impact of 
AI by 
CNN tech-
niques is 
feasible in 
plasma 
OES anal-
ysis for 
VOC clas-
sification. 

Zhu, J. 
et al. 
(2022) 
[60] 

A synergis-
tic method-
ology of arti-
ficial 
intelligence 
(AI)-
augmented 
ion mobility 
and mid-in-
frared spec-
troscopy 
(IMMS). 

First, the 
calibration 
of data was 
made by the 
standard 
transform, 
SMOTE, 
and ALS. 
Afterward, 
the t-SNE 
was used for 
feature ex-
traction. Fi-
nally, Deep 
Learning 
techniques 
such as LDA 
and DNN 
were used to 
assist gas 
classification 
and predic-
tion. 

A dataset 
was ob-
tained at 
different 
gas con-
centra-
tions: 
1300, 
800, 400, 
and 215 
ppm. 

A 99.08 % 
accuracy 
for a pre-
cise gas 
mixture 
concentra-
tion pre-
diction. 

A syner-
gistic 
methodol-
ogy of ar-
tificial in-
telligence 
(AI) aug-
mented by 
ion mobil-
ity and 
mid-infra-
red spec-
troscopy 
(IMMS) 
for isopro-
pyl alco-
hol (IPA) 
concentra-
tion pre-
diction. 

Li, 
L.N. et 
al. 
(2021) 
[61] 

It is pre-
sented a dis-
cussion of 
the different 
ANN 

Artificial 
Neural Net-
work (ANN) 
methods 
such as 

Multiple 
datasets 
available 
in the lit-
erature 

A review 
of ANN 
schemes 
for multi-
farious 

Prospects 
for the de-
velopment 
of ANN-
LIBS 
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techniques is 
presented to 
carry out 
qualitative 
and quantita-
tive analysis 
of the 
chemomet-
rics in laser-
induced 
breakdown 
spectroscopy 
(LIBS). 

Functional 
Neural Net-
works 
(RBFNN), 
Convolu-
tional Neural 
Networks 
(CNN), and 
Self-Organ-
izing Maps 
(SOM), 
among oth-
ers, were ap-
plied to clas-
sify, 
identify, and 
recognize 
patterns in 
laser-in-
duced break-
down spec-
troscopy. 

were dis-
cussed.  

chemo-
metrics 
applied to 
LIBS anal-
ysis in the 
past dec-
ades. 

methodol-
ogies cov-
ering joint 
detection 
of the in-
formation 
from gen-
eralized 
spectra. In 
addition, 
the im-
provement 
and better 
combina-
tion of dif-
ferent 
ANNs for 
quantita-
tive and 
qualitative 
analysis. 

Lin, L. 
et al. 
(2021) 
[62] 

Optimization 
of plasma 
medicine by 
optical emis-
sion spec-
troscopy 
with ANN. 

Using ANNs 
in series to 
optimize the 
plasma 
chemical 
composition 
in real-time. 
700 OES ex-
amples were 
used for the 
ANN train-
ing and 200 
spectra 
for the test-
ing. 

A dataset 
of 900 
OES was 
collected 
from the 
experi-
mental 
measure-
ments of 
a helium-
guided 
cold at-
mos-
pheric 
plasma 
jet. 

Optimiza-
tion of dif-
ferent 
combina-
tions of 
N2, O2, 
H2O, and 
He by 
means of 
ANN. The 
prediction 
of spatial 
resolution 
for; a) he-
lium–air 
ratio, b) 
the mean 
electron 
tempera-
ture, and 
c) reactive 
species 
versus 

A real-
time diag-
nostic of 
target situ-
ations in 
vivo. The 
optimiza-
tion fo-
cuses on 
self-adap-
tive 
plasma 
chemistry. 
A proposal 
to achieve 
intelligent 
plasma 
therapy. 
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H2O ad-
mixture. 

Kim, 
D.H et 
al. 
(2021) 
[63] 

Fault detec-
tion and 
classification 
for advanced 
equipment 
control using 
information 
from optical 
emission 
spectroscopy 
(OES) pro-
duced by 
plasma glow 
discharge. 

After data 
pre-pro-
cessing, the 
abnormali-
ties are de-
tected in 
real-time 
through the 
isolation for-
est algo-
rithm. After-
ward, the 
Adaboost al-
gorithm 
identifies the 
root cause. 
Finally, the 
DeepSHAP 
algorithm 
predicts the 
main param-
eters as gas 
flow rate and 
critical 
plasma in-
formation. 

A dataset 
is ob-
tained us-
ing the 
infor-
mation 
provided 
by the 
sensors 
and 
plasma 
infor-
mation 
from in 
situ OES 
data. 

Increased 
identifica-
tion accu-
racy of 
99%, in-
stead 
about 50% 
obtained 
with the 
conven-
tional IPA 
recogni-
tion. 

The best 
model 
recogni-
tion pro-
vides an 
accuracy 
of 93.6%. 
In addi-
tion, the 
perfor-
mance 
compari-
son among 
two 
trained 
models de-
notes that 
the model 
defined 
with OES 
input data, 
plasma in-
formation 
(PI), and 
state varia-
ble identi-
fication 
(SVID) is 
the best 
option. 

 

3. Method 

The proposed workflow design shown in Fig. 2 is composed of a) the National In-
stitute of Standards and Technology (NIST) online database and experimental da-
taset and comprises b) simulation of the synthetic spectra data frame, c) machine 
learning data frame, d) data correction data frame, e) graphical user interface 
(GUI) data frame, and f) Windows application for the user. This workflow scheme 
was implemented in Jupyter Notebook (an open-source web application) and QT5 
multi-platform framework running in a GUI on Windows operating system. 
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Fig. 2 Workflow design of the proposed automatic atomic species prediction. 

The simulation of synthetic spectra data frame requires information from the 
NIST online database that can be downloaded from the web cloud 
(https://physics.nist.gov/PhysRefData/ASD/lines_form.html). Obtained data were 
processed to create a local repository with about 118 atomic elements of the peri-
odic table by using Wget of Python. An implemented algorithm generated a utiliz-
able URL including parameters as the spectrum for each atomic element and sub-
species, transition probability of each line, statistical weight, energy level 
information, wavelength data, wavelength units, and CSV text output format. 

Fig. 3 URL for download replacement of Argon (Ar) specie. 
Thus, a pseudocode defined as Algorithm 1 was implemented to get this infor-

mation through a character string from the NIST. It is important to mention that 
Algorithm 1 must be used with a substitution string in Python, as shown in Fig. 3. 

Algorithm 1 Pseudocode for downloading element species from the NIST. 
 
1: 
2: 
3: 
4: 
5: 

Input: element_list, directory_name, url, 
Output: elementi.csv 
To elementi in element_list do: 
file_namei ←concatenate (elementi, ‘csv’) 
urli ← replace (url, elementi) 
download_save (urli, concatenate (directory_name + 
file_namei)) 
end 

Synthetic data spectra were simulated in Jupyter Notebook and served to build a 
local dataset enabling automatic spectrum lines recognition [33, 34, 38, 64]. The 
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simulation of 972 synthetic spectra with the transition probability function of each 
line, statistical weight, energy level information, wavelength data, wavelength 
units, and the temperature was achieved in time execution of about 9.85 ms, at a 
standard deviation of 0.18 ms. Some samples of the mentioned simulation can be 
found at https://github.com/orosalesm/synthetic. 

This process is complemented by Algorithm 2, called df_concat, conforming to 
the class df_base that is ready to calculate the model of the synthetic spectra. 

Algorithm 2 Pseudocode to concatenate elements. 
 
1: 
2: 
3: 
4: 
5: 
6: 
7: 

Input: file_list_csv, file_interest_columns 
Output: concatenated_elements.csv 
df ← create_dataframe () 
to filei in file_list_csv do: 
file_tempi ← download (filei) 
file_tempi ← filter (file_tempi, file_inter-
est_columns) 
df ← concatenate (df, file_tempi) 
end 
save (df, concatenated_elements.csv) 

The class df_base contains the parameters used for calculating the relative inten-
sity. At the same time, the class df_calculus determines the index and range of 
NIST values. The temperature-dependent partition function can be calculated us-
ing [65]: 

𝑄(𝑇) = ∑௡
௞ୀ଴ 𝑔௞𝑒

షಶೖ
ೖ್೅                                        (4) 

Where n is the last populated level (a.u.). While the intensity of the chosen line 
is determined by [66, 67]: 

𝐼 =
ଶቌ೒ೖಲೖ೔

ೂഊ೎
∙௘

షಶೖ
ೖ್೅ቍ

గ
⋅ ௪

ସ(ఒೄିఒ೎)మା௪మ                                  (5) 

Where, λS is the wavelength between each pair of adjacent points (nm), with a 
defined step increment in nm, λC is the NIST’s wavelength in the selected range 
(nm), and w is the total width of the line (nm). 

The resulting class df_spectrum is constantly updated based on the df_base and 
the df_calculus. The interactive GUI implemented with the ipgwidgets library of 
Jupyter Notebook [64] allows the user to select the wavelength range to be dis-
played, the atomic specie to be studied, the energy level, the medium of the 
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discharge (atmospheric pressure or vacuum) and to adjust the intensity level to 
scale the required sections of the spectrum. Fig. 4 shows an experimental spectrum 
of 200 to 890 nm obtained from an Ocean Optics™ HG-1 calibration light source 
type Ar I and Hg I mixture at 15,000 K. It was reconstructed from 33 data files 
provided by a monochromator Acton SP2500. The importance of the broadcasting 
technique from the NumPy library of Python consists of performing matrixial 
mathematical operations, reducing the calculation time because some elements 
have more than one specie. Usually, the required execution time to generate a 
spectrum does not exceed one second. 

 
Fig. 4 HG-1 calibration light source experimental spectrum plotted in Jupyter Notebook. 

As shown in Fig. 4, the intensity threshold value is set by the user. The auto-
matic line detection function establishes the wavelength and line intensity of any 
peak exceeding this limit. It should be noted that the detection function is essential 
for specie detection but not for temperature calculation. Line detection is per-
formed by modifying the data obtained with the class named signal of the module 
SciPy [64]. This modification consists of detecting the wavelength value of the ex-
tremes of the overall width of each line. With these extreme values, we calculate 
the center of each line and consider it as the FWHM; the result is observed in Fig. 
5. 
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Fig. 5 Proposed approach to obtain the FWHM. 
There are two issues to be solved with the acquired spectrum data: a) the base-

line definition and b) the optical wavelength displacement correction. In many li-
censed software suites, the baseline correction procedure is implemented as a 
semi-manual task, where the user indicates (on a computer screen) the start and 
the end of the line regions while the software constructs a (piecewise linear) con-
necting the plot as an estimation of the baseline. Later, the obtained curve is sub-
tracted from the original data. In this work, the procedure was carried out with the 
algorithm described in [68, 69, 70]. 

While the optical displacement is corrected using the following process: A refer-
ence data array containing the wavelength information from the atomic species of 
the calibration source should be established. Each experimental data array is con-
stituted by 33,792 pairs of values matching a wavelength value with an intensity 
obtained with an Ocean Optics™ HG-1 calibration light source. It is necessary to 
identify the wavelength of the lines from the experimental spectrum and save them 
in another data array which is concatenated with the reference array to calculate 
the wavelength difference among both spectra. 

Finally, a regression technique (either linear or polynomial) can be selected to 
obtain the corrected spectrum, which consists of the following steps: 
1. Wavelengths with their respective species are obtained from the Ocean Op-

tics™ HG-1 calibration lamp data sheet and saved in the array. 
2. Plot the calibration lamp data and identify the wavelengths at which the peaks 

are found and saved into an array. 
3. Steps 1 and 2 are repeated for each experimental run and concatenated. 
4. Once all wavelengths are obtained from the Ocean Optics™ HG-1 calibration 

lamp experimental runs, their difference is calculated and stored in separate 
arrays. 

5. Each coefficient of linear regression is calculated for each experimental execu-
tion. 

6. Then, the experimental execution coefficients of a second-degree polynomial 
regression are calculated. 

7. Finally, with the coefficients, the prediction functions defined by equations (6) 
and (7) are implemented to observe their behavior concerning optical displace-
ment. 

𝑓𝑙(𝑥_𝑒𝑥𝑝௜) = 𝛽1 + 𝛽2 ∙ 𝑥_𝑒𝑥𝑝௜                                      (6) 

𝑓𝑝(𝑥_𝑒𝑥𝑝௜) = 𝛽1 + 𝛽2 ∙ 𝑥_𝑒𝑥𝑝௜ + 𝛽3 ∙ 𝑥_𝑒𝑥𝑝௜
ଶ                          (7) 

Where, 𝑓𝑙(𝑥_𝑒𝑥𝑝௜) and 𝑓𝑝(𝑥_𝑒𝑥𝑝௜) are the wavelength linear and polynomial 
corrected vectors, respectively 𝛽1, 𝛽2, and 𝛽3, are the linear and polynomial coef-
ficients, while 𝑥_𝑒𝑥𝑝௜ , and 𝑥_𝑒𝑥𝑝௜

ଶ are the wavelength vectors from detected lines 
in the HG-1 experimental calibration lamp. 
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The percentage of the variance between the actual value and the predicted value 
is estimated by means of the determination coefficients (𝑅ଶ) as: 

𝑅2 = 1 −
∑𝑖 (𝑦𝑖−𝑦ො𝑖)2

∑𝑖 (𝑦𝑖−𝑦)2                                               (8) 

Where, 𝑦௜  and 𝑦ො௜ are the actual and predicted value, and 𝑦 is the median. Table 3 
shows the values of 𝑅ଶ. 
Table 3 𝑅ଶ values for each experimental run of the HG-1 calibration lamp. 

Regres-
sion 

𝑅2 𝛼 𝛽1 𝛽2 𝛽3 

Linear 0.7919
03 

0.5709
07 

0.0003
33 

- - 

Polyno-
mial 

0.8050
07 

-
0.4828
7 

0 -
0.00002
2 

0.00000031156
81 

 
Coefficients in Table 3  denote that the linear regression has a lower 𝑅ଶ value 

than the polynomial regression. However, the difference is small; therefore, either 
linear or polynomial is implemented for the optical displacement correction. Fig. 6 
shows the results obtained before and after the correction procedure for both the 
optical wavelength displacement and the continuous background spectrum base-
line of the experimental curve. 

 
Fig. 6 Baseline and optical displacement corrections in the HG-1 calibration light source experi-
mental spectrum generated in QT5. 

To develop the interactive GUI, the ipywidgets library of Jupyter Notebook func-
tions is required [64]. The controls are defined based on the user's needs. The op-
tions chosen for the GUI are included in Table 4; it should be noted that these can 
be configured initially or modified later. 
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Table 4 Jupyter Notebook initially selected controls. 

Control Initial 
value 

Mini-
mum 

Maxi-
mum 

St
ep 

Description 

FloatSlider 0.2 0 2 0.
1 

‘Wide:’ 

IntSlider 5000 0 50000 50
0 

‘Tempera-
ture:’ 

Checkbox False - - - ‘Normal-
ized:’ 

Dropdown ‘Ne’ - - - ‘Specie:’ 
RadioButtos ‘Air’ - - - ‘Kind’ 
SelectMulti-
ple 

[1] - - - ‘Energy 
level:’ 

IntRang-
eSlider 

[200, 
890] 

0 2000 - ‘Range:’ 

 
Other functional requirements of the GUI are: 

1. Import spectra in CSV format. 
2. Automatic characterization of the species of the elements He, N, O, Ar, and 

Hg. 
3. Baseline and optical shift correction. 
4. Estimation of the electronic excitation temperature. 
5. Exportation of characterization with labels in PNG (Portable Network 

Graphics) and CSV format. 
The minimum hardware requirements are: 

1. Processor: Pentium Core i5 4570. 
2. Memory: 8GB. 
3. Operating System: Windows 8 , 64 bits. 

In this chapter, the characteristics and requirements of the GUI are presented, 
but not its design because it is not the aim of this work. However, Fig. 4 and Fig. 6 
are obtained from the designed interface. 

3.1 Ensemble-classifier based on Decision Trees Algorithms 

The proposed APNTP analysis requires two previous stages. In the first step, the 
following four parameters are set: 1) the studied elements: Ar, He, Hg, N, and/or 
O; 2) the ionization degree 1 and/or 2; 3) atmosphere type: 0 for vacuum and 1 for 
air and 4) the wavelength range available from 200 until 890 nm. The second step 
is to balance data among the nine possible classes (Ar I/0, Ar II/1, He I/2, Hg I/3, 
Hg II/4, N I/5, N II/6, O I/7, and O II/8) because the majority class is O II with 
326 species, and the minority class is Hg I with 35 species. The balance between 
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classes is done with random over-sampling. As a result, the total of species is 
2,934 providing 326 species per class element. 

The proposed algorithms were coded, as shown in Liu et al. (2010), to predict 
the balanced classes of the nine element species. The results showed that decision 
tree-based algorithms achieve a good performance. 

3.1.1. Unbalance data 

As mentioned above, imbalanced data is a constant problem in applications of 
machine learning techniques. The methodology to deal with this issue consisted, 
on the one hand, filtering data to manage the same content. Second, the balancing 
of classes. This stage focuses on loading the final_concatenated_elements.csv file 
in a DataFrame to perform a filter based on four parameters adjusted to the estab-
lished requirements (see Fig. 2, stage (b) Simulation of synthetic spectra). The op-
tions with their filters are: 
1. Species: ['Hg,' 'Ar,' 'N,' 'O', 'He'] 
2. Degrees of ionization: [1, 2] 
3. Type: [0, 1] 
4. Wavelength range: [200, 890] 

Based on these criteria, it is necessary to process the data according to its class, 
as described below, because class imbalance affects predictions. In this regard, the 
data work is not balanced; of the nine classes, there is a total of 1,284 species, and 
O II is the majority class with 326 species, while the minority class is the element 
Hg I with 35 species. 

This class imbalance can be treated with random undersampling and random 
oversampling techniques [71, 72]. Initially, there were 3,899 species, and Ar II 
was the majority class with 1,768 species; oversampling randomly selects samples 
from each minority class until reaching the same number of species from the ma-
jority class; this allows the inclusion of species with minority classes in each gen-
erated tree. Since O II has 326 species, by applying oversampling, each class 
reaches this value, and the result is the balance of classes, with a total sum of 
2,934 species for the nine classes. 

3.1.2 Hyperparameter optimization 

A specific space of possibilities is required for hyperparameter optimization. 
There are available techniques as the principles of experimental design that are: a) 
randomization, b) replication, c) blocking, and d) stratification are required. For 
this stage, the user should define the properties of each classifier, which are: a) the 
number considered for each division of the decision tree (max_features, quantity 
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4), b) the type of criteria (criterion, quantity 3), c) the maximum number of levels 
(max_depth, quantity 26), d) the number of decision trees used (n_estimators, 
quantity 10), e) sample selection method (boostrap, quantity 2), f) the minimum 
number of samples required to divide the node (min_samples_split, quantity 3), 
and g) for each leaf of the node (min_samples_leaf, quantity 3). Then, the total ex-
ploration space is equal to 17,820 for Decision Tree Classifier, 27,664 in Bagging 
Classifier, and 3,243,240 for Random Forest Classifier, and Extremely Random-
ized Trees, respectively. The selection criterion of these properties was an essay 
from the experiment based on the no-free lunch theorem [73,74]. This set of hy-
perparameters was explored using the techniques GridSearch and Ran-
domGridSearch. To ensure the reproducibility conditions of this experimental de-
sign, the utilized hardware for this processing task was constituted by a processor 
Intel i7 3770, 16GB of RAM Kingston HyperX 1600MHz, storage ADATA SSD 
480 GB, Lenovo Mahobay motherboard. At the same time, the software was inte-
grated with NumPy V1.18.0, Pandas V0.25.3, Matplotlib V3.1.2, SciPy V1.4.1, 
and Scikit Learn V0.22.1. 

The variance and standard correlation were considered to estimate the times for 
exploration of the algorithms and the configuration of the experiment to define the 
best combination of parameters, as can be noted in Table 5. 
Table 5 Estimated time for exploration by the algorithm and its configuration for one hundred 
repetitions. 

Algo-
rithm 

Hyperparam-
eter 
space 

Spl
its 

Combina-
tions 

Days 

DT 17x103 2 3.563x106 0.05
8 

  3 5.345x106 0.08
9 

  5 8.911x106 0.14
2 

BG 27x103 2 5531x106 0.10
6 

  3 8.292 x106 0.12
4 

  5 13.830x106 0.23
7 

RF 3.243x106 2 648.649x1
06 

10.8
60 

  3 972.970x1
06 

15.0
21 

  5 1.622x109 25.4
19 

ERT 3.243x106 2 648.640x1
06 

9.76
3 
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  3 972.971x1
09 

15.6
67 

  5 1.6221x109 25.9
66 

 
Then, based on the main advantages of the operational characteristics of a deci-

sion tree, it can be established that [51]: 
1. It is a non-parametric model; this makes it consistent in the results. 
2. It supports heterogeneous data (continuous, discrete, ordered, and categorical). 
3. It is quick to train and predict. Its complexity is determined with 𝛩 =

(𝑁𝑙𝑜𝑔ଶ𝑁) and 𝛩 = (𝑁ଶ) on average and the worst-case values, respectively. 
4. It is easy to interpret plotting when the tree is short; otherwise it becomes com-

plex. 
5. It has low bias and typically high variance, meaning if the training data varies 

slightly, the resulting tree and predictions can change significantly. 
In this case, the solution was to combine several trees in a single model. The 

first step was to create an ensemble of this predictor where each instance is trained 
with a random subset of training samples using the bootstrap aggregation method, 
whose advantage is that it reduces the variance of algorithms with high variance 
[75]. Although the models built with this technique may have structural similari-
ties that result in correlated predictions, this was corrected by means of random 
forest, which consists of building several decision trees adding randomness to the 
construction process to give rise to a forest. As an advantage, overfitting, variance, 
and correlation in the predictions are reduced [51]. To improve another property 
of the algorithm, the extremely randomized trees algorithm was applied. As a re-
sult, the speed in the build process was increased because the division threshold is 
random instead of being calculated; this result is included in Table 5. 
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Fig. 7 Resulting correlation values for the two different considered configurations, a) sp_num 
and obs_wl_X(nm), and b) obs_wl(nm) against specie. 

The hyperparameter search random forest has a maximum time for exploration 
of 25,418 days, while extremely randomized trees require 25,967 days. As a re-
sult, the variance was reduced with the chosen bagging decision tree techniques. 
The second step was to determine the correlation value calculated with NIST data, 
e.g., sp_num and obs_wl_X(nm), which for the species 'O II,' 'Hg II,' 'Ar II,' 'Ar I,' 
'N I,' 'O I' showed a negative magnitude (see Fig. 7.a). This can be interpreted as 
follows: the longer the wavelength of the element, the lower the probability of 
finding a higher energy level. If now the data of obs_wl(nm) against the element is 
obtained, the behavior of Fig. 7.b was observed. Where the value 1.0 indicates a 
strong and positive correlation with itself because of the data variability. It should 
be noted that NaN, in Python, means a data type used to represent any value that is 
undefined or unpresentable. The reason the data was analyzed in this manner is 
that when it is necessary to predict an experimental spectrum, the data contains 
only the wavelength and, depending on the energy applied to the reactor, it is pos-
sible to deduce the energy level of I or II, or both. This feature is user configura-
ble. 

Another analysis result is provided in Table 6, where all possible energy levels 
were configured for each specie. The results obtained were interesting by them-
selves, however in our case, it does not apply, since for any experimental spec-
trum, an intensity is obtained for a wavelength and the data [Element, Aki(s^-1), 
Ek(eV), g_k, Type] are unknown a priori. 
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Table 6 Correlation values as configured for each specie and NIST parameters to Ar, He, Hg, N, 
and O. 

sp
eci
e 

 parameters sp_nu
m 

obs_wl_X(n
m) 

Aki(s^
-1) 

Ek(eV
) 

g_k Type 

Ar sp_num 
1.0 -0.39937 

0.1541
36 

0.8712
9 

0.1294
67 

0.0332
4 

 obs_wl_X(n
m) 

-
0.3993
7 1.0 

-
0.1797
5 

-
0.5593
9 

-
0.1045
2 

-
0.0873
4 

 Aki(s^-1) 
0.1541
36 -0.17975 1.0 

0.1060
96 

-
0.0024
9 

-
0.4242
8 

 Ek(eV) 0.8712
9 -0.55939 

0.1060
96 1.0 

0.2222
55 

0.2441
82 

 g_k 
0.1294
67 -0.10452 

-
0.0024
9 

0.2222
55 1.0 

0.1687
1 

 Type 
0.0332
4 -0.08734 

-
0.4242
8 

0.2441
82 

0.1687
1 1.0 

He sp_num NaN NaN NaN NaN NaN NaN 
 obs_wl_X(n

m) 
NaN 1.0 

-
0.1658
2 

-
0.1472 

0.2876
44 

0.0226
18 

 Aki(s^-1) 

NaN -0.16582 1.0 

-
0.4257
1 

-
0.0856
4 

-
0.3716
4 

 Ek(eV) 

NaN -0.1472 

-
0.4257
1 1.0 

0.1767
09 

0.3437
68 

 g_k 

NaN 0.287644 

-
0.0856
4 

0.1767
09 1.0 

0.2667
61 

 Type 

NaN 0.022618 

-
0.3716
4 

0.3437
68 

0.2667
61 1.0 

H
g 

sp_num 

1.0 -0.5334 
0.1128
28 

0.7517
65 

0.2528
83 

-
0.2465
5 

 obs_wl_X(n
m) -

0.5334 1.0 
-
0.2664 

-
0.4390
8 

-
0.1085 

0.5242
27 
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 Aki(s^-1) 
0.1128
28 -0.2664 1.0 

0.0362
6 

0.0821
45 

-
0.4691
2 

 Ek(eV) 
0.7517
65 -0.43908 

0.0362
6 1.0 

0.4014
45 

-
0.1897
2 

 g_k 
0.2528
83 -0.1085 

0.0821
45 

0.4014
45 1.0 

-
0.0842
1 

 Type -
0.2465
5 0.524227 

-
0.4691
2 

-
0.1897
2 

-
0.0842
1 1.0 

N sp_num 
1.0 -0.26713 

0.2331
88 

0.8427
36 

-
0.0802 

0.1936
97 

 obs_wl_X(n
m) 

-
0.2671
3 1.0 

-
0.2666
6 

-
0.1616 

0.1489
63 

0.7131
35 

 Aki(s^-1) 
0.2331
88 -0.26666 1.0 

0.0534
72 

-
0.1409
3 

-
0.3360
5 

 Ek(eV) 0.8427
36 -0.1616 

0.0534
72 1.0 

0.0212
82 

0.3749
62 

 g_k 
-
0.0802 0.148963 

-
0.1409
3 

0.0212
82 1.0 

0.1467
15 

 Type 
0.1936
97 0.713135 

-
0.3360
5 

0.3749
62 

0.1467
15 1.0 

O sp_num 

1.0 -0.46216 
0.1394
33 

0.8900
54 

-
0.0796
5 -0.076 

 obs_wl_X(n
m) 

-
0.4621
6 1.0 

-
0.3316
3 

-
0.4265
5 

0.1004
9 

0.6631
08 

 Aki(s^-1) 
0.1394
33 -0.33163 1.0 

0.0820
76 

-
0.0505
3 

-
0.4422
7 

 Ek(eV) 
0.8900
54 -0.42655 

0.0820
76 1.0 

-
0.0313 

-
0.0585
9 

 g_k -
0.0796
5 0.10049 

-
0.0505
3 

-
0.0313 1.0 

0.0433
6 
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 Type 

-0.076 0.663108 

-
0.4422
7 

-
0.0585
9 

0.0433
6 1.0 

Actually, Fig. 14 in Section 5 provides better results by accuracy than correla-
tion and variance. Thus, the correlation was not presented in a general way as an 
object of study for all the elements but only for its explanation. In fact, in state-of-
the-art studies, research focuses mainly on the accuracy of the prediction for spe-
cies or molecules in another case. 

The results of the estimated time for exploration by the algorithm and its config-
uration are given in Table 5. The hyperparameters space was explored using a de-
sign of experiments based on repeated-stratified cross-validation (RSCV). The ex-
periment configuration to validate the RSCV was performed with n_splits = 2, 3, 
and 5 (number of blocks for the cross-validation), n_repetitions = 100 (number of 
iterations for the repeated cross-validation), and random_state= 2020 (seed used 
to generate the random state). 

The algorithms: a) Decision Tree (DT), b) Bagging (BG), c) Random Forest 
(RF), and d) Extremely Randomized Tree (ERT) included in Table 5 were evalu-
ated using the F1 metric [33, 74] which validate each output by a confusion matrix 
(See Fig. 8). The last is based on the following four options: a) True Negative 
(TN), negative class and false prediction; b) False Positive (FP, error type I), nega-
tive class and true prediction, c) False Negative (FN, error type II), positive class 
and false prediction, and d) True Positive (TP), positive class and true prediction. 
This confusion matrix was implemented to verify the output of each classification 
algorithm. Since the classification problem presented in this work is greater than 
two classes, the equations derived from the confusion matrix shown in Table 7 
were used [74]. From the set of equations in Table 7, the metric F1 is defined as 
the harmonic mean of Precision and Recall as follows: 

𝐹1 = 2 × ௉௥௘௖௜௦௜௢௡∙ோ௘௖௔௟௟
௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟

                                          (9) 

In fact, this is a multiclass problem; the final expression is: 

𝐹1 =
1

𝑐
∑𝑐

𝑖=1 𝐹1𝑖                                                (10) 

Where 𝐹1 is the average value, and 𝑐 the total number of classes. 
 

Table 7 Equations derived from the confusion matrix [74]. 

Name Binary expres-
sion 

Multiclass expression Description 
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Accu-
racy 

=
𝑉𝑃 + 𝑉𝑁

𝑁  
= 1 − 𝐸𝑟𝑟𝑜𝑟 

=
𝑉𝑃 + ∑ 𝑉𝑁

𝑁  
= 1 − 𝐸𝑟𝑟𝑜𝑟 

Percentage of correct 
classifications. 

Error =
𝐹𝑃 + 𝐹𝑁

𝑁  
= 1
− 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

=
∑ 𝐹𝑃 + ∑ 𝐹𝑁

𝑁
=

(𝑝ᇱ − 𝑉𝑃) + (𝑝 − 𝑉𝑃
𝑁

= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

Percentage of incorrect 
classifications. 

VP-
rate 
Recall 
Sensi-
tivity 

=
𝑉𝑃
𝑝  =

𝑉𝑃
𝑝  Percentage of the current 

class classified correctly. 
If the class is Ar I, how 
often does it predict Ar I? 

FP-rate =
𝐹𝑃
𝑛  

= 1
− 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

=
∑ 𝐹𝑃
∑ 𝑛

 

=
𝑝ᇱ − 𝑉𝑃
∑ 𝑛

 

= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

The percentage is of FP 
relative to the current 
class. 
If the class is not Ar I, 
how often does it predict 
Ar I? 

Preci-
sion 

=
𝑉𝑃
𝑝′  =

𝑉𝑃
𝑝′  Percentage of the current 

class correctly predicted. 
If he predicts Ar I, how 
often is he correct? 
 

Speci-
ficity 

=
𝑉𝑁
𝑛  

= 1 − 𝐹𝑃𝑟𝑎𝑡𝑒 
=

∑ 𝑉𝑁
∑ 𝑛

 

= 1 − 𝐹𝑃𝑟𝑎𝑡𝑒  

Percentage of the other 
classes classified cor-
rectly. If the class is not 
Ar I, how often do you 
predict it is not Ar I? 
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Fig. 8 Confusion matrix for classification of three classes. 

3.1.3. Line detection. 

Line detection is performed by choosing a data segment that exceeds an intensity 
threshold and determining the position of the maximum value; this process is re-
peated in turn, and thus the lines are chosen. This procedure is detailed using the 
pseudocode of Algorithm 3. As shown in Fig. 4, a clear-green dotted line is a 
threshold the user determines from which the peaks are detected. Also, the points 
in red color with blue shadow are the lines detected with Algorithm 3. 

Algorithm 3. Line detection pseudocode.  
 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

Input: intensities, threshold, window_size  
Output: line_index 
intensities = intensities > threshold 
beginnin ← 0 
end ← window_size  
i ← 0 
to window_size in intensities do: 
   window_size ← window_size [beginning, 
end] 
   line_index [i] ← arg_max (window_size) 
   beginnin ← fin + 1 
   end ← window_size + 1 
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12:    i ← i + 1 
end 
return line_index 

4. Results 

Finding the best combination of parameters for a specific algorithm is one of the 
most time-consuming tasks when exploring a specific possibility space. Within the 
cross-validation techniques, there is stratified repeated cross-validation, which is a 
technique that covers all the principles of the design of experiments. The configu-
ration options used for repeatedly stratified cross-validation are included in Table 
8. 
Table 8 Options for repeatedly stratified cross-validation. 

Parameter Op-
tion 

Description 

n_splits [2,3,
5] 

The number of blocks used in cross-valida-
tion. 

n_repeats [100
] 

The number of times the cross-validation is 
repeated. 

ran-
dom_state 

2020 Seed is used to generate the random state. 

 
The computational cost is multiplied by the value of n_repeats for a possible 

combination of each algorithm in the hyperparameter space shown in section 
3.1.2. Table 5 summarizes the combinations of each hyperparameter space with 
the total time achieved by the respectively applied algorithm. As a result of the hy-
perparameter optimization, the best combination of hyperparameters for every sin-
gle classifier is provided in Table 9. 

After that, the hyperparameters were assigned to their corresponding algorithm 
and tested again with the data training with cross-validation of 2, 3, 5, and 10 
times with repeated cross-validation (RCV) and repeated-stratified cross-valida-
tion (RSCV). Fig. 9 shows that ERT is slightly better in all tests, while the other 
tree algorithms have similar performance. The median (vertical line within the 
box) and media (with the triangle) overlap, denoting an equilibrated data distribu-
tion. 
Table 9 Best hyperparameters by each classifier 

Hyperparameter DT B
G 

R
F 

ET 

max_freatures None - lo
g2 

None 
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Criterion en-
tropy 

- gi
ni 

en-
tropy 

max_depth 20 - 33 33 
min_sam-
ples_split 

2 - 2 2 

min_sam-
ples_leaft 

1 - 1 1 

base_estimator - D
TC 

- - 

max_samples - 0.8
9 

- - 

n_estimators - 10
0 

90 100 

Bootstrap - Tr
ue 

Tr
ue 

False 

bootstrap_fea-
tures 

- Fal
se 

- - 

 
Thus, the parametric ANOVA test was performed to verify if the distribution 

medians in the model were the same (H0). In addition, the non-parametric Fried-
man test allows estimating if the medians of the distributions in the models are 
similar (H0), as shown in Table 10, for a significance level α= 0.05. 

The best algorithm performance depends on the cross-validation used to test, as 
it is depicted in Fig. 9, where the higher the cross-validation number, the higher 
the F1 metric prediction value. Although Friedman's p-values are correct in Table 
10, it is recommendable to consider a null value. For instance, these values are 
used with chaotic systems such as the pendulum and double pendulum. But, in 
most cases, the data sets are normally distributed. 
Table 10 Comparison of p-values in H0 by the Friedman and ANOVA test. 

 Experi-
ment 

Friedman p-
value 

Fried-
man H0 

ANOVA p-
value 

ANOV
A H0 

RC
V 

2x100 1.850x10-70 False 0 False 

 3x100 3.434x10-104 False 0 False 
 5x100 8.229x10-174 False 0 False 
 10x100 0 False 0 False 
RS
CV 

2x100 1.350x10-69 False 0 False 

 3x100 5.495x10-104 False 0 False 
 5x100 7.328x10-173 False 0 False 
 10x100 0 False 0 False 
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Fig. 9 Box-and-whisker plots with RCV and RSCV for the studied classifier algorithms with 2, 
3, 5, and 10 times cross-validations ((a), (b), (c), and (d) respectively), each one of them repeated 
100 times. 

In addition, data sets validated utilizing RSCV have higher dispersion than those 
validated with RCV; this fact is denoted by the presence of outliers in all the 
RSCV studied cases. For both validation methods, when repeated ten times, wider 
distribution results are obtained. Thus, when they are assembled, the F1 metric 
prediction increases. The algorithm hyperparameters effects are constantly visual-
ized during the training of the NIST training database and tested by cross-valida-
tion test. This characteristic defines the number of samples to train the final model 
and if this fits the data correctly. 

Both Friedman H0 and ANOVA H0 result tests were false because one or more 
distributions for each validation were different. So, the algorithm assembled was 
accomplished with the four classifiers: DT, BG, RF, and ERT. To show subtle dif-
ferences among the four algorithms, the Nemenyi test was applied with signifi-
cance alpha α= 0.05. Thus, the prediction position for each sample was obtained, 
and the critical distance (CD) was calculated, showing that the models were lo-
cated in the range of permissible CD because the higher the number of divisions of 
RCV, the lower the value of CD (Fig. 10). 

It does not imply that each estimator provides the same prediction error for the 
same observation. The automatic learning curve obtained with the assembled 
model was calculated by soft voting from the NIST database, and it can be ob-
served in Fig. 11. The light blue color on the cross-validation test curve corre-
sponds to standard deviation values; since the more data considered, the smaller 
the deviation obtained. As a result, the final model correctly predicts the data it 
was trained with. 
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Fig. 10 Nemenyi test results for the considered classifiers. 

 
Fig. 11 Learning curve for the ensembled and trained model with the NIST data. 

After creating the ensemble classifier and considering the different atomic spe-
cies, several receiver operating characteristics (ROC) curves were obtained to 
compare the TP against the FP rate, where the closer the resulting curve is to the 
upper left corner, the better the classifier. Thereby, each curve can be integrated as 
an area under curve (AUC) value as they are provided between parentheses in Fig. 
12. The species He I, Hg I, N I, and O I have a TP rate near the unit, the best-at-
tained approach was for O I with about 0.9999, while the worst case was for O II 
with about 0.8257. Finally, the AUC for the metric F1 was 0.9442. 
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Fig. 12 ROC curves with cross-validation to voting model and a detail of the left upper corner. 

5. Discussion 

Table 11 provides the selected combination of attributes based on the experi-
mental design theory. The variables were chosen to get the experimental results in 
the wavelength range from 200 nm to 890 nm. The goal of the selected combina-
tion is to generate the synthetic spectra dataset (972, that is, 108 spectra by specie) 
and evaluate the accuracy of the final ensembled model with the best hyperparam-
eters. These synthetic spectra aim to evaluate the accuracy (accuracy shown in Ta-
ble 7 is used) of the final model generated with the best hyperparameters found. 

It is important to mention that the choice of confidence intervals to calculate the 
precision per species for each of wavelength λS, FWHM, and temperature T (see 
Table 11) was set at 0.95 using the bootstrapping technique, which is a sampling 
approximation that results in a Gaussian distribution, after which the mean and 
standard deviation can be obtained with the chosen confidence interval. Thus, ac-
curacy was privileged over precision because the former applies to balanced data 
and the latter to unbalanced data. 
Table 11 Selected combination of attributes for synthetic spectra. 

Attribute Options Quan-
tity 

Species Ar I, Ar II, He I, Hg I, Hg II, N I, N II, O 
I, O II  

9 

λS (nm) 0.01; 0.02; 0.03; 0.05; 0.1; 0.2 6 
FWHM 
(nm) 

0.01; 0.03; 0.05; 0.1; 0.3; 0.5 6 

T(K) 1,000 K; 10,000 K; 20,000 K; 3 
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The effect of the selected combination in the synthetic spectra is resumed as fol-

lows: 
1. As the value of λS increases, displacement of lines is induced either to the right 

or left direction, as well as deformation and superposition of lines. 
2. The increase of FWHM causes the horizontal lines to broaden, gradually add-

ing to adjacent ones or overlapping each other and distorting the spectrum. 
3. The increase of T promotes the appearance of certain lines that are proportional 

to the energy present in the spectrum. 
As a result, the effect in predictions is established as follows: 

1. The accuracy observed for energy levels I and II is greater than 0.9 for all cases 
of FWHM and T in the case of O II; this property is compromised for temper-
atures lesser than 20,000 K. Low-intensity lines cannot always be detected. 

2. This procedure provides accuracy predictions ranging from 0.8 to 1.0 for all the 
cases. 

3. It is observed that the lower standard deviation values are at λS = 0.012 nm. 
Fig. 13 (a), (c), and (e) show the scatter plots where the red dots represent the 

outliers for FWHM, and the blue ones, the non-outliers, while the dotted line rep-
resents the median value. It is observed in Fig. 13 (b), (d), and (f), the box and 
whisker plots that serve to verify whether the detection of outliers is correct, the 
white triangle represents the median value, the vertical line inside the blue box 
represents the median; the red and blue colors have equivalent meaning to scatter 
charts of Fig. 13 (a), (c), and (e). Fig. 13 (c) shows that the lowest median FWHM 
value (0.10973 nm) was obtained from the execution of three calibration source 
experiments. The results of accuracy predictions grouped by λS in all classes are 
shown in Fig. 14. Each black point represents the mean value, the vertical length 
of the colored lines shows the standard deviation, while the internal black lines are 
confidence intervals at 0.95 defined by bootstrapping and calculating the limits 
with the 0.025 and 0.975 percentiles respectively. 
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Fig. 13 Detection of outliers for the FWHM for each experimental spectrum of the HG-1, (a), (b) 
to 0.10992, (c), (d) to 0.10973, and (e), (f) to 0.11184. 

 
Fig. 14 Accuracy of predictions grouped by λS for each specie. 

The confidence intervals of each species are lower than their respective standard 
deviation. He I, N I, N II, and O I provide an accuracy of 1.0 in at least one step 
size, while Hg I has the highest standard deviation at 0.028 nm. This stands that 
some values deviate from their mean value (0.93905) along the confidence inter-
val, indicating that 0.95 of the predictions have an accuracy between 0.93273 and 
0.94423. Table 12 provides the statistics generated from the prediction accuracy 
with the synthetic spectra for the conditions of λS and FWHM. 
Table 12 Statistics of λS and FWHM obtained with synthetic spectra dataset. 

Spe
cies 

λS 
(nm) 

Quan
tity 

Me-
dian 

𝜎 Confi-
dence 

Confi-
dence 

Confidence 
interval 
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interval 
boot-
strapping 
95% high 

interval 
bootstrap-
ping 95% 
low 

bootstrap-
ping 95% 
difference 

Ar I 0.01
2 

99 0.991
60 

0.002
85 

0.99216 0.99104 0.00112 

 0.02 99 0.982
92 

0.004
52 

0.98381 0.98202 0.00182 

 0.02
8 

99 0.991
40 

0.002
38 

0.99188 0.99092 0.00096 

Ar 
II 

0.01
2 

99 0.995
01 

0.002
43 

0.99546 0.99451 0.00094 

 0.02 99 0.992
18 

0.002
45 

0.99269 0.99172 0.00092 

 0.02
8 

99 0.980
34 

0.004
39 

0.98126 0.97957 0.00171 

He I 0.01
2 

99 0.973
71 

0.007
81 

0.97519 0.97228 0.00289 

 0.02 99 0.999
70 

0.002
82 

1 0.99912 0.00087 

 0.02
8 

99 0.973
71 

0.007
81 

0.97519 0.97228 0.00289 

Hg 
I 

0.01
2 

100 0.979
72 

0.013
66 

0.98233 0.97704 0.00528 

 0.02 100 0.980
1 

0.013
79 

0.98292 0.97734 0.00557 

 0.02
8 

100 0.939
01 

0.029
71 

0.94422 0.93272 0.01145 

Hg 
II 

0.01
2 

100 0.994
72 

0.012
55 

0.99643 0.99181 0.00462 

 0.02 100 0.979
02 

0.023
23 

0.98305 0.97401 0.00904 

 0.02
8 

100 0.976
06 

0.026
22 

0.98070 0.97066 0.01009 

N I 0.01
2 

100 1 0 1 1 0 

 0.02 100 1 0 1 1 0 
 0.02

8 
100 0.979

32 
0.004
82 

0.98028 0.97841 0.00183 

N II 0.01
2 

100 1 0 1 1 0 
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 0.02 100 0.990
10 

0.008
65 

0.99180 0.98835 0.00344 

 0.02
8 

100 0.990
06 

0.008
66 

0.99183 0.98832 0.00346 

O I 0.01
2 

100 1 0 1 1 0 

 0.02 100 1 0 1 1 0 
 0.02

8 
100 1 0 1 1 0 

O II 0.01
2 

72 0.996
72 

0.004
12 

0.99757 0.99582 0.00174 

 0.02 72 0.991
62 

0.008
11 

0.99332 0.98978 0.00354 

 0.02
8 

72 0.989
97 

0.010
58 

0.99213 0.98751 0.00465 

 
Figure 15 shows the effect of increasing temperature T on attained accuracy. 

Predictions with an accuracy greater than 0.94 are obtained with temperatures un-
der 5,000 K. It is also observed that the increase in temperature has a positive ef-
fect on the accuracy of predictions, which is noticeable in classes: Ar I, He I, Hg I, 
and Hg I. 

 
Fig. 15 Accuracy effect predictions at the increase in Temperature (K). 

Finally, the results of the species identification for three different APNTP exper-
imental spectra produced in a DBDR are provided in Fig. 16. The three graphs de-
note a fully uploaded experimental spectrum obtained when the appropriate set-
tings are provided through the user GUI, which consists of a) baseline, b) area, c) 
wavelength range, d) line magnitude, and e) threshold detection method. The pro-
cess finishes running the prediction; the GUI displays the spectrum with labels and 
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accuracy percentages. Fig. 16 (b), (d), and (f) are enlarged in a narrow wavelength 
range to show better detail of their previous image. 

 
(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
(f) 
Fig. 16 Species detection produced by an APNTP at three different gas mixtures and voltage dis-
charge parameters: (a) 10% Ar-90% O2 at 17.5 kV, (c) 100% Ar-0% O2 at 13.5 kV, (e) 90% Ar-
10% O2 at 13.4 kV, and their respectively zoomed area (b), (d), and (f) in a narrow wavelength 
range. 

From Fig. 16 (a), (c), and (e), it is possible to observe Ar I, O I, and O II species 
with predictions ranging from 73% to 100% for the gas mixtures containing argon 
and oxygen. The minimum accuracy value of 73 % was due to a change intro-
duced in the attributes established in Table 11. 
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7. Conclusion 

A machine learning tool based on decision trees algorithms was ensembled to 
achieve the automatic recognition of atmospheric pressure non-thermal plasma 
species from optical emission spectroscopy data defined in the wavelength range 
from 200 nm to 890 nm. A confidence of 95% was attained, and a prediction accu-
racy from 0.93905 to 1.0 for all the studied species. The synthetic spectra gener-
ated from data reported by NIST were stored in a local repository to be used as 
training data for the decision tree-based system. The optical displacement and 
baseline correction made from experimental spectra results derived from the data 
acquired by the monochromator were suitably modified. The optimization of hy-
perparameters was carried out using cross-validation and the GridSearch tech-
nique, with searching times of approximately 26 days. Stratified repeat cross-vali-
dation and repeat cross-validation were applied to probe the optimization of the 
hyperparameters. Both results show similar performance, tested by Friedman and 
ANOVA techniques. The proposed automatic atomic species prediction was vali-
dated by modifying the parameters: λS, FWHM, and T, leading to results not re-
ported in the literature for this kind of species until now. The proposed application 
allows: a) to correct the optical displacement and continuous background, b) to es-
timate the temperature of the species, and c) to integrate the ensembled model to 
predict the lines of the species. Thus, integrating machine learning techniques and 
optical spectroscopy identification in an interactive development environment pro-
vides precious information on species produced by APNTP. Finally, this method-
ology can be used to train models with other synthetic species and predict the spe-
cies by identifying them from an optical spectrum emitted from plasma discharges 
based on the results obtained from synthetic data and experimental spectra with 
high-efficiency results. 

Acknowledgements 

The author disclosed receipt of the following financial support for the research, 
authorship, and/or publication of this chapter book. This work was partially sup-
ported by Consejo Mexiquense de Ciencia y Tecnología (CoMeCyT), México, 
through the program “Estancias de Investigación Especializadas COMECyT, Edo-
Méx.”, grant No. EESP2021-0019. 

References 

1. Raizer, Y.P., Allen, J.E.: Gas discharge physics. Springer, Berlin (1997) 



Machine Learning for identifying atomic species from optical emission spectra  43 

2. Roth R.J.: Industrial Plasma Engineering: Volume 1: Principles (1st ed.), IOP, Tennes-
see (1995) 

3. Zhang, H., Sang, L., Wang, Z., Liu, Z., Yang, L., Cheng, Q.: Recent progress on non-
thermal plasma technology for high barrier layer fabrication. Plasma Sci. Technol. 
20(6), 063001 (2018). https://doi.org/10.1088/2058-6272/aaacc8 

4. Nehra, V., Kumar, A., Dwivedi, H.K.: Atmospheric non-thermal plasma sources. Int. J. 
Eng. 2(1), 53–68 (2008) 

5. Roth R.J.: Industrial Plasma Engineering: Volume 2: Applications to Nonthermal 
Plasma Processing (1st ed.), CRC Press, Boca Raton (2001). 
https://doi.org/10.1201/9781420034127 

6. Baloul, Y., Aubry, O., Rabat, H., Colas, C., Maunit, B., Hong, D. Paracetamol degrada-
tion in aqueous solution by non-thermal plasma. Eur. Phys. J. Appl. Phys. 79, 30802 
(2017). https://doi.org/10.1051/epjap/2017160472 

7. Mercado-Cabrera, A., Jaramillo-Sierra, B., Peña-Eguiluz, R., López-Callejas, R., Valen-
cia-Alvarado, R., Rodríguez-Méndez, B.G., Muñoz-Castro, A.E.: Chlorobenzene Degra-
dation in Simultaneous Gas–Liquid Phases Assisted by DBD Plasma. IEEE T. Plasma 
Sci. 47(1), 86–94 (2019). https://doi.org/10.1109/tps.2018.2877057 

8. Prysiazhnyi, V., Brablec, A., Čech, J., Stupavská, M., Černák, M.: Generation of Large-
Area Highly-Nonequlibrium Plasma in Pure Hydrogen at Atmospheric Pressure. Con-
trib. Plasm. Phys. 54(2), 138–144 (2014). https://doi.org/10.1002/ctpp.201310060 

9. Van Impe, J., Smet, C., Tiwari, B., Greiner, R., Ojha, S., Stulić, V., Vukušić, T., Režek 
Jambrak, A.: State of the art of nonthermal and thermal processing for inactivation of 
micro-organisms. J. Appl. Microbiol. 125(1), 16–35 (2018). 
https://doi.org/10.1111/jam.13751 

10. Kuchenbecker, M., Bibinov, N., Kaemlimg, A., Wandke, D., Awakowicz, P., Viöl, W.: 
Characterization of DBD plasma source for biomedical applications. J. Phys D: App. 
Phys. 42(4), 045212 (2009). https://doi.org/10.1088/0022-3727/42/4/045212 

11. Sladek, R.E.J., Stoffels, E., Walraven, R., Tielbeek, P.J.A., Koolhoven, R.A.: Plasma 
Treatment of Dental Cavities: A Feasibility Study. IEEE T. Plasma Sci. 32(4), 1540–
1543 (2004). https://doi.org/10.1109/tps.2004.832636 

12. He, R., Li, Q., Shen, W., Wang, T., Lu, H., Lu, J., Lu, F., Luo, M., Zhang, J., Gao, H., 
Wang, D., Xing, W., Jia, W., Liu, F.: The efficacy and safety of cold atmospheric 
plasma as a novel therapy for diabetic wound in vitro and in vivo. Int. Wound J. 17(3), 
851–863 (2020). https://doi.org/10.1111/iwj.13341 

13. Xu, G.M., Shi, X.M., Cai, J.F., Chen, S.L., Li, P., Yao, C.W., Chang, Z.S., Zhang, G.J.: 
Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound 
Repair Regen. 23(6), 878–884 (2015). https://doi.org/10.1111/wrr.12364 

14. Heuer, K., Hoffmanns, M.A., Demir, E., Baldus, S., Volkmar, C.M., Röhle, M., Fuchs, 
P.C., Awakowicz, P., Suschek, C.V., Opländer, C.: The topical use of non-thermal die-
lectric barrier discharge (DBD): Nitric oxide related effects on human skin. Nitric Ox-
ide.44, 52–60 (2015). https://doi.org/10.1016/j.niox.2014.11.015 

15. Kisch, T., Schleusser, S., Helmke, A., Mauss, K.L., Wenzel, E.T., Hasemann, B., Mai-
laender, P., Kraemer, R.: The repetitive use of non-thermal dielectric barrier discharge 
plasma boosts cutaneous microcirculatory effects. Microvasc. Res. 106, 8–13 (2016). 
https://doi.org/10.1016/j.mvr.2016.02.008 

16. Ishaq, M., Evans, M.M., Ostrikov, K.K.: Effect of atmospheric gas plasmas on cancer 
cell signaling. Int. J. Cancer. 134(7), 1517–1528 (2013). 
https://doi.org/10.1002/ijc.28323 

17. Heinlin, J., Isbary, G., Stolz, W., Morfill, G., Landthaler, M., Shimizu, T., Steffes, B., 
Nosenko, T., Zimmermann, J., Karrer, S.: Plasma applications in medicine with a spe-
cial focus on dermatology. J. Eur. Acad. Dermatol. Venereol. 25(1), 1–11 (2010). 
https://doi.org/10.1111/j.1468-3083.2010.03702.x 



44  Rosales Martínez et al.  

18. Brun, P., Pathak, S., Castagliuolo, I., Palù, G., Brun, P., Zuin, M., Cavazzana, R., Mar-
tines, E.: Helium Generated Cold Plasma Finely Regulates Activation of Human Fibro-
blast-Like Primary Cells. PLoS ONE. 9(8), e104397 (2014). 
https://doi.org/10.1371/journal.pone.0104397 

19. Patriarca, M., Barlow, N., Cross, A., Hill, S., Robson, A., Taylor, A., Tyson, J.: Atomic 
spectrometry update: review of advances in the analysis of clinical and biological mate-
rials, foods, and beverages. J. Anal. At. Spectrom. 37(3), 410–473 (2022). 
https://doi.org/10.1039/d2ja90005j 

20. Graves, D.B.: Oxy-nitroso shielding burst model of cold atmospheric plasma therapeu-
tics. Clin. Plasma Med. 2(2), 38-49 (2014). https://doi.org/10.1016/j.cpme.2014.11.001 

21. Tanaka, H., Ishikawa, K., Mizuno, M., Toyokuni, S., Kajiyama, H., Kikkawa, F., Metel-
mann, H.R., Hori, M.: State of the art in medical applications using non-thermal atmos-
pheric pressure plasma. Rev. Mod. Plasma Phys. 1(1) (2017). 
https://doi.org/10.1007/s41614-017-0004-3 

22. Welz, C., Emmert, S., Canis, M., Becker, S., Baumeister, P., Shimizu, T., Morfill, G.E., 
Harréus, U., Zimmermann, J.L.: Cold Atmospheric Plasma: A Promising Complemen-
tary Therapy for Squamous Head and Neck Cancer. PLoS ONE. 10(11), e0141827 
(2015). https://doi.org/10.1371/journal.pone.0141827 

23. Laux, C.O., Spence, T.G., Kruger, C.H., Zare, R.N.: Optical diagnostics of atmospheric 
pressure air plasmas. Plasma Sources Sci. Technol. 12(2), 125–138 (2003). 
https://doi.org/10.1088/0963-0252/12/2/301 

24. Moon, S.Y., Choe, W.: A comparative study of rotational temperatures using diatomic 
OH, O2 and N2+ molecular spectra emitted from atmospheric plasmas. Spectrochim. 
Acta Part B At. Spectrosc. 58(2), 249–257 (2003). https://doi.org/10.1016/s0584-
8547(02)00259-8 

25. Argoti, A., Fan, L.T., Cruz, J., Chou, S.T.: Introducing the stochastic simulation of 
chemical reactions using the Gillespie algorithm and MATLAB: Revisited and aug-
mented. Chem. Eng. Educ. 42(1), 35–46 (2008) 

26. Indrajit, Sen, Ajay Shandil, and Shrivastava, V. S.: Study for Determination of Heavy 
Metals in Fish Species of the River Yamuna (Delhi) by Inductively Coupled Plasma-
Optical Emission Spectroscopy (ICP-OES), Adv. Appl. Sc. Res. 2(2), 161-166 (2011). 

27. Kolpaková A., Kudrna P., Tichý M.: Study of plasma system by OES (optical emission 
spectroscopy). In: Safranková J. (ed). 20th Annual Conference of Doctoral Students. 
Prague, Czech Republic, May 31 to June 3, 2011, pp. 180–185 (2011) 

28. Watson, S., Nisol, B., Lerouge, S., Wertheimer, M.R.: Energetics of Molecular Excita-
tion, Fragmentation, and Polymerization in a Dielectric Barrier Discharge with Argon 
Carrier Gas. Langmuir. 31(37), 10125–10129 (2015). https://doi.org/10.1021/acs.lang-
muir.5b02794 

29. Hamed, S.S.: Spectroscopic Determination of Excitation Temperature and Electron 
Density in Premixed Laminar Flame. Egyp. J. Solids. 28(2), 349–357 (2005). 
https://doi.org/10.21608/ejs.2005.149334 

30. Yoshida, E., Shizuma, K., Endo, S., Oka, T.: Application of neural networks for the 
analysis of gamma-ray spectra measured with a Ge spectrometer. Nucl. Instrum. Meth-
ods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 484(1-3), 557–563 (2002). 
https://doi.org/10.1016/s0168-9002(01)01962-3 

31. Kunze, H. J. (ed.): Introduction to Plasma Spectroscopy. Springer, Berlin 
(2009).  https://doi.org/10.1007/978-3-642-02233-3 

32. Liu, W., Chawla, S., Cieslak, D.A., Chawla, N.V.: A Robust Decision Tree Algorithm 
for Imbalanced Data Sets. In: Parthasarathy, S., Liu, B., Goethals, B., Pei, J., Kamat C. 
(eds.) Proceedings SIAM International Conference on Data Mining. pp. 767-777, Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2010). 
https://doi.org/10.1137/1.9781611972801.67 



Machine Learning for identifying atomic species from optical emission spectra  45 

33. Barga, R., Fontama, V., Tok, W.H. (ed): Predictive Analytics with Microsoft Azure Ma-
chine Learning. Berkeley (2015) https://doi.org/10.1007/978-1-4842-1200-4 

34. Kumar, R.: Future for scientific computing using Python. Int. J. Eng. Technol. Manag. 
Res. 2(1), 30–41 (2020). https://doi.org/10.29121/ijetmr.v2.i1.2015.28 

35. Oliphant, T.E.: Python for Scientific Computing. Comput. Sci. Eng. 9(3), 10–
20 (2007). https://doi.org/10.1109/mcse.2007.58 

36. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blodel, 
M., Prettenhofer, P., Weiss, R., Dubourg, V., Venderplas, J., Passos, A., Cournapeau, 
D.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830 
(2011) 

37. Wang G., Peng, B.: Script of Scripts: A pragmatic workflow system for daily computa-
tional research. PLOS Comp. Biol. 15(2): e1006843. https://doi.org/10.1371/jour-
nal.pcbi.1006843 

38. Yu, W., Carrasco-Kind, M., Brunner, R.J.: Vizic: A Jupyter-based interactive visualiza-
tion tool for astronomical catalogs. Astron. Comp. 20, 128–139 (2017). 
https://doi.org/10.1016/j.ascom.2017.06.004 

39. Hywel, E.E., Pisonero, J., Clare, M.M.S., Rex, N.T.: Atomic spectrometry update: re-
view of advances in atomic spectrometry and related techniques. J. Anal. At. Spectron. 
37, 942-965 (2022). https://doi.org/10.1039/d2ja90015g 

40. Jones, R.D., Stalling, D.L., Davis, J., Jurkovich, P., LaPointe, K.: Software validation 
for medical device manufacturing. Qual. Assur. J. 7(4), 242–247 (2003). 
https://doi.org/10.1002/qaj.245 

41. Martinez-Urreaga, J., Mira, J., Gonzáles-Fernández, C.: Introducing the Stochastic Sim-
ulation of Chemical Reactions: Using the Gillespie Algorithm and MATLAB. Chem. 
Eng. Educ. 37(1), 14-19 (2003) 

42. Shi, S., Finch, K., She, Y., Gamez, G.: Development of Abel's inversion method to ex-
tract radially resolved optical emission maps from spectral data cubes collected via 
push-broom hyperspectral imaging with sub-pixel shifting sampling. J. Anal. At. Spec-
trom. 35(1), 117–125 (2020). https://doi.org/10.1039/c9ja00239a 

43. Abbasi, H., Nazeri, M., Mirpour, S., Farahani, N.J.: Measuring electron density, electric 
field and temperature of a micro-discharge air plasma jet using optical emission spec-
troscopy. In: Proceedings of 2nd International Conference on Knowledge-Based Engi-
neering and Innovation (KBEI), Teheran, Iran, 5–6 November (2015) 
https://doi.org/10.1109/KBEI.2015.7436207 

44. Gajdošík, Martin, Karl Landheer, Kelley, M. Swanberg, Christoph, J.: INSPECTOR: 
free software for magnetic resonance spectroscopy data inspection, processing, simula-
tion, and analysis. Sci. Rep. 11, 2094 (2021). https://doi.org/10.1038/s41598-021-
81193-9 

45. García, L.A., Restrepo, E., Jiménez, H., Castillo, H.A., Ospina, R., Benavides, V., De-
via, A.: Diagnostics of pulsed vacuum arc discharges by optical emission spectroscopy 
and electrostatic double-probe measurements. Vacuum. 81(4), 411–416 (2006). 
https://doi.org/10.1016/j.vacuum.2006.06.005 

46. McManus, C.E., Dowe, J., McMillan, N.J.: Quantagenetics® analysis of laser-induced 
breakdown spectroscopic data: Rapid and accurate authentication of materials. Spectro-
chim. Acta Part B At. Spectrosc. 145, 79–85 (2018). 
https://doi.org/10.1016/j.sab.2018.04.010 

47. Navrátil, Z., Trunec, D., Šmíd, R., Lazar, L.A.: Software for optical emission spectros-
copy-problem formulation and application to plasma diagnostics. Czech. J. Phys. 
56(Suppl 2), B944–B951 (2006). https://doi.org/10.1007/s10582-006-0308-y 

48. Oeltzschner, G., Zöllner, H.J., Hui, S.C.N., Mikkelsen, M., Saleh, M.G., Tapper, S., Ed-
den, R.A.E.: Osprey: Open-source processing, reconstruction & estimation of magnetic 



46  Rosales Martínez et al.  

resonance spectroscopy data. J. Neurosci. Methods. 343, 108827 (2020).. 
https://doi.org/10.1016/j.jneumeth.2020.108827 

49. Miettinen, O.: Protostellar classification using supervised machine learning algorithms. 
Astrophys. Space Sci. 363(9), 2-15 (2018). https://doi.org/10.1007/s10509-018-3418-7 

50. Bai, Y., Liu, J., Wang, S., Yang, F.: Machine Learning Applied to Star–Galaxy–QSO 
Classification and Stellar Effective Temperature Regression. Astron. J. 157 (1), 9 
(2018). https://doi.org/10.3847/1538-3881/aaf009 

51. Breiman, L.: Random Forest. Mach. Learn. 45, 5–32 (2015). 
https://doi.org/10.1023/A:1010933404324 

52. Espinosa Zúñiga, J.J.: Aplicación de algoritmos Random Forest y XGBoost en una base 
de solicitudes de tarjetas de crédito. Ing. Invest. Tecnol. 21(3), 1–16 (2020). 
https://doi.org/10.22201/fi.25940732e.2020.21.3.022 

53. Virtanen, P. et al.: SciPy 1.0: fundamental algorithms for scientific computing in Py-
thon. Nat. Methods. 17(3), 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2 

54. Mesbah, A., Graves, D.B.: Machine learning for modeling, diagnostics, and control of 
non-equilibrium plasmas. J. Phys D: Appl. Phys. 52(30), 30LT02 (2019). 
https://doi.org/10.1088/1361-6463/ab1f3f 

55. Meza-Ramirez, C.A., Greenop, M., Ashton, L., Rehman, I.U.: Applications of machine 
learning in spectroscopy. Appl. Spectrosc. Rev. 56(8-10), 733–763 (2020). 
https://doi.org/10.1080/05704928.2020.1859525 

56. Chen, H.F., Yang, Y.P., Chen, W.L., Wang, P.J., Lai, W., Fuh, Y.K., Li, T.T.: Predict-
ing residual stress of aluminum nitride thin-film by incorporating manifold learning and 
tree-based ensemble classifier. Mater. Chem. Phys. 295, 127070 (2023). 
https://doi.org/10.1016/j.matchemphys.2022.127070 

57. Carter, J.A., O’Brien, L.M., Harville, T., Jones, B.T., Donati, G.L.: Machine learning 
tools to estimate the severity of matrix effects and predict analyte recovery in induc-
tively coupled plasma optical emission spectrometry. Talanta, 223, 121665 (2021). 
https://doi.org/10.1016/j.talanta.2020.121665 

58. Rabasovic, M.S., Marinkovic, B.P., Sevic, D.: Time resolved study of laser triggered 
electric discharge spark in atmosphere: Machine learning approach. Adv. Space Res. 71, 
1331-1337 (2023). https://doi.org/10.1016/j.asr.2022.04.046 

59. Wang, C.Y., Ko, T.S., Hsu, C.C.: Interpreting convolutional neural network for real-
time volatile organic compounds detection and classification using optical emission 
spectroscopy of plasma. Anal. Chim. Acta. 1179, 338822 (2021). 
https://doi.org/10.1016/j.aca.2021.338822 

60. Zhu, J., Ji, S., Ren, Z., Zhang, Z., Ni, Z., Liu, L., Zhang, Z., Song, A., Lee, C.: Artificial 
intelligence-augmented, triboelectric-induced ion mobility for mid-infrared gas spec-
troscopy (2022). https://doi.org/10.21203/rs.3.rs-1939335/v1 

61. Li, L.N., Liu, X.F., Yang, F., Xu, W.M., Wang, J.Y., Shu, R.: A review of artificial neu-
ral network based chemometrics applied in laser-induced breakdown spectroscopy anal-
ysis. Spectrochim. Acta Part B At. Spectrosc. 180, 106183 (2021). 
https://doi.org/10.1016/j.sab.2021.106183 

62. Lin, L., Yan, D., Lee, T., Keidar, M.: Self‐Adaptive Plasma Chemistry and Intelligent 
Plasma Medicine. Adv. Intell. Syst. 4(3), 2100112 (2021). 
https://doi.org/10.1002/aisy.202100112 

63. Kim, D.H., Hong, S.J.: Use of Plasma Information in Machine-Learning-Based Fault 
Detection and Classification for Advanced Equipment Control. IEEE Trans. Semicond. 
Manuf. 34(3), 408–419 (2021). https://doi.org/10.1109/tsm.2021.3079211 

64. Randles, B.M., Pasquetto, I.V., Golshan, M.S., Borgman, C.L.: Using the Jupyter Note-
book as a Tool for Open Science: An Empirical Study. In Proceedings 2017 ACM/IEEE 
Joint Conference on Digital Libraries (JCDL), Toronto, Canada, 19–23 June (2017). . 
https://doi.org/10.1109/jcdl.2017.7991618 



Machine Learning for identifying atomic species from optical emission spectra  47 

65. De Galan, L., Smith, R., Winefordner, J.D.: The electronic partition functions of atoms 
and ions between 1500 °K and 7000 °K. Spectrochim. Acta B. 23(8), 521–525 (1968). 
https://doi.org/10.1016/0584-8547(68)80032-1 

66. Flannigan, D.J.: Spreadsheet-Based Program for Simulating Atomic Emission Spectra. 
J. Chem. Educ. 91(10), 1736–1738 (2014). https://doi.org/10.1021/ed500479u 

67. Ingle, J.D., Crouch, S.R. (eds.): Spectrochemical Analysis. Prentice Hall, Upper Saddle 
River (1988) 

68. He S., Zhang, W., Liu, L., Huang, Y., He, J., Xie, W., Wu., P., Du, C.: Baseline correc-
tion for Raman spectra using an improved asymmetric least squares method. Anal. 
Methods. 6(12), 4402-4407 (2014). https://doi.org/10.1039/C4AY00068D 

69. Jiang, X., Li, F., Wang, Q., Luo, J., Hao, J., Xu, M.: Baseline correction method based 
on improved adaptive iteratively reweighted penalized least squares for the x-ray fluo-
rescence spectrum. Appl. Opt. 60(19), 5707 (2021). https://doi.org/10.1364/ao.425473 

70. Baek, S.J., Park, A., Ahn, Y.J., Choo, J.: Baseline correction using asymmetrically re-
weighted penalized least squares smoothing. Analyst. 140(1), 250-7 (2015). 
https://doi.org/10.1039/c4an01061b 

71. García, V., Sánchez, J. S., Marqués, A. I., Florencia, R., & Rivera, G. Understanding the 
apparent superiority of over-sampling through an analysis of local information for class-
imbalanced data. Expert systems with applications, 158, 113026 (2020).  
https://doi.org/10.1016/j.eswa.2019.113026 

72. Rivera, G., Florencia, R., García, V., Ruiz, A., & Sánchez-Solís, J. P. News classifica-
tion for identifying traffic incident points in a Spanish-speaking country: A real-world 
case study of class imbalance learning. Applied Sciences, 10(18), 6253 (2020). 
https://doi.org/10.3390/app10186253 

73. Adam, S.P., Alexandropoulos, S.A.N., Pardalos, P.M., Vrahatis, M.N.: No Free Lunch 
Theorem: A Review. In: Demetriou, I., Pardalos, P. (eds) Approximation and Optimiza-
tion. Springer Optimization and Its Applications, vol 145, pp. 57-82 Springer, Cham 
(2019). https://doi.org/10.1007/978-3-030-12767-1_5 

74. Asch, V.V.: Macro-and micro-averaged evaluation measures. [[BASIC DRAFT]]. 
Comp. Sci. (2013) 

75. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 
Concepts, Tools, and Techniques to Build Intelligent Systems. Second Ed. O’Reilly Me-
dia, Sebastopol (2019). 

 

 


