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Abstract Breathing rate asymmetry (BRA) refers to the observed disparities in the acceleration and decel-
eration phases of human respiration. The techniques employed to assess BRA could also be utilized in
exploring hypertensive disorders like pre-eclampsia, which is known to cause autonomic cardiorespiratory
changes. This study explores features of complexity, including the asymmetry (time irreversibility) of short-
term breath-to-breath breathing rate variability among women with severe and moderate pre-eclampsia
features compared to those with normal blood pressure. In our study, we retrospectively analyzed contin-
uous respirogram recordings from women in labor, including those diagnosed with severe pre-eclampsia
(SP = 22), moderate pre-eclampsia (P = 19), and normotensive control group (C = 35). Using these data,
we calculated 5 min of breath-to-breath (BB) time series to measure Porta’s index (P%), Guzik’s index
(G%), and Ehlers’ index (E), alongside measures of asymmetrical entropy, including the entropy of accel-
eration runs (HAR), the entropy of deceleration runs (HDR), and total entropy (H). In addition, Fuzzy
Entropy (FuzzEn) and Multiscale Fuzzy Entropy (MFE) over timescales 1–20 were calculated from the BB
time series. The nonlinearity was assessed by surrogate analysis. The study’s results revealed significant
differences in short-term BRA; specifically, mean values of G% and E were the lowest in SP compared
to C and P. Conversely, mean values of the HDR were higher in the SP group than the C. Higher mean
values of MFE and a greater percentage of nonlinearity were observed in the SP group as compared to
the C group. Our results suggest that women with severe pre-eclampsia may exhibit a higher short-term
BRA characterized by a lower contribution of breathing rate decelerations to short-term variability, higher
irregularity and nonlinearity of BB time series, and particularly more irregular behavior of decelerations
compared to normotensive women. This may indicate a potential modification in the autonomic control of
breathing rate and breathing instability.

1 Introduction

Pregnancy brings considerable physiological changes, impacting the cardiovascular and pulmonary systems and
body temperature control. While these adjustments are typically normal, specific changes might indicate unusual
progression or potential health risks [1]. One such significant condition exclusive to human pregnancy is pre-
eclampsia, a critical health issue that poses a substantial threat to the lives of both mothers and newborns.
Survivors of pre-eclampsia often face a shortened lifespan and a heightened likelihood of suffering from strokes,
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heart diseases, and diabetes. Additionally, children born from pregnancies affected by pre-eclampsia are at increased
risk of being born prematurely, experiencing perinatal death, and suffering from neurodevelopmental issues as well
as cardiovascular and metabolic disorders later in life. This complex multisystem disorder is characterized by the
sudden onset of high blood pressure occurring after the 20th week of pregnancy, accompanied by at least one
additional complication, such as proteinuria, dysfunction of maternal organs, or uteroplacental unit issues [2].

In healthy physiological signals, asymmetry is recognized as a feature of complex nonlinear dynamics. In con-
trast, pathological states associated with aging or illness often exhibit reduced asymmetry [3]. This loss of balance
is evident in the Poincaré plot for heart rate variability (HRV) during normal sinus rhythm, where points are
distributed unevenly above and below the identity line, showcasing rapid changes in the interval between heart-
beats [4]. Heart rate asymmetry (HRA) has been recently studied in various physiological and pathophysiological
contexts, such as in healthy children [5], during head-up tilt tests in healthy men [6], vasovagal syncope in females
[7], coronary disease [8], among others. It is a phenomenon of differences between accelerations and decelerations
in beat-to-beat heart rate [7].

Previous research from our group has shown that women with pre-eclampsia demonstrate a decreased magnitude
of decelerations in heart rate dynamics compared to normotensive women assessed by HRA [9]. This finding
suggests that there may be a reduced cardiac parasympathetic response in preeclamptic women during both labor
and non-labor periods, in contrast to their normotensive counterparts. Furthermore, it has been observed that
women experiencing severe and mild pre-eclampsia during labor may exhibit altered cardiorespiratory coupling
compared to normotensive women. In severe pre-eclampsia, disrupted cardiorespiratory coupling may be linked to
vagal withdrawal and less intricate cardiorespiratory dynamics. Previous research suggests that variations in vagal
activity among preeclamptic groups may indicate a further decline in vagal activity correlating with the severity
of the condition [10].

Although crucial, the respiratory or breathing rate is less frequently monitored than other vital signs. Nonethe-
less, it can act as an early indicator of potential health issues. Recent research has linked variations in breathing
patterns to different medical conditions [11]. Similar to HRA, we introduced the concept of Breathing Rate Asym-
metry (BRA), which refers to the observed disparities in the acceleration and deceleration of breath-to-breath
respiratory rate. Furthermore, breathing rate variability (BRV) reflects the variability in the timing of inhalation
or exhalation, influenced by elements such as breath depth and the pauses that follow exhalation and precede
inhalation. Airflow patterns determine the breathing rate, and they can be measured with simple devices such as
a respiratory belt [10].

Changes in breathing patterns have been demonstrated in women with pre-eclampsia during pregnancy. Pregnant
women at high risk with sleep-disordered breathing in mid-gestation exhibited increased arterial stiffness during
pregnancy compared to those without such conditions. Sleep-disordered breathing at any point during pregnancy
was also associated with a higher risk of pre-eclampsia, with this effect being augmented by hypersomnolence [12].
Wilson et al. (2018) evaluated the frequency of sleep-disordered breathing in women with gestational hypertension
and pre-eclampsia compared with body mass index and gestation-matched normotensive pregnant women. They
found that more than half of women with a hypertensive disorder of pregnancy meet the clinical criteria for
sleep-disordered breathing [13].

According to relevant research, BRV has emerged as a novel measure to study the psychophysiology effects
of meditation [14]. Compared to HRV, BRV can provide insights into the short-term effects on the Autonomic
Nervous System (ANS) during meditation, whereas HRV is more indicative of long-term effects. In the context of
pre-eclampsia, there is limited evidence evaluating BRV and BRA depending on the severity of the preeclamptic
condition and assessing its impact on normotensive pregnant women. This suggests a need for more focused studies
to understand how these physiological measures can effectively monitor and manage pre-eclampsia in different
patient profiles.

Entropy-based methodologies, derived from information theory, are crucial for assessing the complexity and
irregularity of physiological signals. Unlike traditional entropy measures, asymmetric entropy evaluates information
from monotonic sequences, including constant heart rate accelerations, decelerations, or consecutive RR intervals
[15]. Biczuk et al. (2024) explored the use of symmetric entropy in distinguishing atrial fibrillation from sinus
rhythm in RR interval time series, showing its potential utility [16]. Furthermore, in time irreversibility analysis,
indices such as Porta (P%), Guzik’s (G%), and Ehlers (E) have proven effective in identifying time irreversibility,
especially in physiological signals [17].

This study explores features of complexity, including the asymmetry (time irreversibility) of short-term breath-
to-breath BRV among women with severe and moderate pre-eclampsia symptoms compared to those with normal
blood pressure. As a secondary objective, we included the assessment of nonlinearity and irregularity of BRV using
entropy measures. This may help to determine the complexity of breathing dynamics in pregnant women, which
may differ significantly across varying severities of pre-eclampsia. We hypothesized that in parturient women with
pre-eclampsia, BRV and BRA exhibit distinct patterns of asymmetry, irregularity, and nonlinearity when compared
to normotensive parturient women, with these differences being more pronounced in severe cases of the condition.
These features could noninvasively predict the severity of pre-eclampsia and potentially help monitor the condition
more effectively.

123



Eur. Phys. J. Spec. Top.

2 Methods

2.1 Dataset description

From a previous investigation, a dataset comprising respirograms obtained between 2021 and 2022 at the “Mónica
Pretelini Saenz” Maternal-Perinatal Hospital in Toluca de Lerdo, State of Mexico, Mexico was employed to analyze
BRA and the irregularity of BRV [10]. Three distinct cohorts of parturient women were examined: the control
group (C), comprising 35 normotensive individuals with systolic/diastolic blood pressure of 115.8 ± 10.7/ 72.0 ±
9.2 mmHg and 39.2 ± 1.2 weeks of pregnancy; the moderate pre-eclampsia group (P), encompassing 19 participants
without severe symptoms with systolic/diastolic blood pressure of 140.9 ± 8.8/90.7 ± 6.7 mmHg and 38.6 ±
1.5 weeks of pregnancy; and the severe pre-eclampsia group (SP), consisting of 22 women in labor who exhibited
pre-eclampsia meeting severity criteria with systolic/diastolic blood pressure of 152.4 ± 15.4/101.1 ± 10.1 mmHg
and 37.5 ± 0.9 weeks of pregnancy. The research committee of the “Mónica Pretelini Saenz” Maternal-Perinatal
Hospital granted ethical clearance for the research endeavor (registration number: 2021–03-719), ensuring adherence
to specific institutional and broader ethical guidelines during the study’s execution.

The recruitment of participants began by distributing an informed consent form that outlined various aspects
relevant to the investigation. This document detailed the study’s objectives, associated risks, potential benefits, and
measures to protect data privacy and confidentiality. Participants were provided with comprehensive information
to ensure they fully understood these aspects before agreeing to participate in the study. All participants signed
the informed consent form.

A compact recording device (Mobi mobile amplifier system, TMSi Systems, The Netherlands) equipped with
a respiration sensor affixed to a chest belt was utilized for data collection. The enduring strain assembly of
the respiration effort (module V6, Mobi, TMSi Systems, The Netherlands) was deployed to monitor maternal
abdominal circumference fluctuations. Twenty minutes of respirograms were captured from participants positioned
in a semi-Fowler position, with a sampling frequency of 1000 Hz. All individuals were in their third trimester of
pregnancy, and the severity of pre-eclampsia was diagnosed by hospital clinicians based on the criteria set forth by
the American College of Obstetricians and Gynecologists (ACOG) [18], corroborated by laboratory assessments
including complete blood count, blood chemistry analysis, general urine analysis, and liver function tests.

2.2 Signal pre-processing

Initially, the respirograms from all groups were filtered within a designated frequency band using a band-pass
filter with cutoff frequencies ranging from 0.2 to 0.5 Hz [19]. Following this filtering, a peak finder algorithm
identified the highest peaks in each respirogram. These peaks were then used to construct the series of consecutive
breath-to-breath (BB) intervals. For each respirogram, reliable 5-min segments of these BB interval time series
were manually selected. An adaptive filter was applied to these BB interval series to remove artifacts automatically
[20]. This additional filtration step was crucial for maintaining the integrity and accuracy of the BB signal analysis.
The MATLAB programming language (The MathWorks Inc, Natick, Massachusetts, USA), version R2023, was
employed for preprocessing and processing the signals. Subsequently, asymmetrical and entropic features were
computed from the BB time series.

2.3 Breathing rate asymmetry (BRA)

This study explored various methods of quantifying asymmetry in BB signals or BRA, ranging from asymmetrical
entropy to the indices developed by Porta, Guzik, and Ehlers.

2.3.1 Time-irreversibility indices

Porta’s index, Guzik’s index, and Ehlers’s index were computed from the BB interval time series using the PyBios
software [21].

Porta’s index (P%) is calculated by dividing the percentage of negative ΔBB by the total of ΔBB �= 0. Here
ΔBB corresponds to the arithmetic difference of two consecutive BB intervals, N (ΔBB −) denotes the number
of negative ΔBB , and N (ΔBB �= 0) indicates the number of all non-zero ΔBB . It measures the contribution of
breathing rate accelerations in the short-term [22]:

P% =
N(ΔBB−)

N(ΔBB �= 0)
× 100 (1)
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Guzik’s index (G%) is based on the percentage evaluation of the cumulative sum of the squared values of positive
ΔBB to the cumulative sum of all squared ΔBBs; it also measures the contribution of breathing rate decelerations
in the short-term [23]:

G% =
∑N(ΔBB+)

i=0 (ΔBB[i]+)2
∑N(ΔBB)

i=0 (ΔBB[i])2
× 100 (2)

Ehlers’ index (E ) is calculated as the skewness of the probability distribution of the ΔBB expressed as [24]:

E =
∑N(ΔBB)

i=0 (ΔBB[i])3
(∑N(ΔBB)

i=0 (ΔBB[i])2
)3/2

(3)

G% and P% are metrics that range from 0 to 100% and are derived from BB time series data. The symmetry
assessment in these time series hinges on the median values of G% and P%. When these median values are close to
50%, it indicates a symmetrical distribution, reflecting an equal balance between accelerations and decelerations in
the breathing rate. Values significantly different from 50% suggest the presence of asymmetry or time irreversibility
in the breathing pattern. In the context of evaluating other signals like E, symmetry is defined by a benchmark
at 0; deviations from this baseline are used as a quantitative measure of the signal’s asymmetry [25].

2.3.2 Monotonic runs

We introduce a series of time intervals between breaths, denoted as BBn , which comprises a sequence
(BB1,BB2,. . . ,BBn). Further, we explored the sequence of differences between these intervals, labeled ΔBB =
(δ1 , δ2 , . . . , δn-1 ), where δi represents the change from one interval to the next, calculated as δi = BB i+1—BB i .
These deltas may exhibit positive, negative, or zero values. Subsequently, we assigned symbolic values to the BB
time series changes, categorizing each δi as positive, negative, or neutral. This classification allowed us to iden-
tify sequences of consistent behavior within the series: a sequence of decelerations, DRi , consists of consecutive
decelerations (positive deltas) bracketed by either an acceleration (negative delta) or no change (zero delta). Con-
versely, an acceleration sequence, ARi , includes consecutive accelerations (negative deltas) terminated by either
a deceleration (positive delta) or no change. Finally, a neutral sequence, NCi , is formed by consecutive neutral
differences (zero deltas), beginning and ending with either an acceleration or a deceleration. The Fig. 1 shows that
the representative BB signal was composed of decelerations: 4 of length 1, 1 of length 2, 1 of length 3; accelerations:
3 of length 1, 1 of length 2, 2 of length 3, and no change: 1 of length 1.

Fig. 1 A representative excerpt from the breath-to-breath (BB) time interval series is depicted based on consecutive
runs. These runs are classified into deceleration and acceleration sequences of a specific length denoted as DRi and ARi ,
respectively, while no change sequences are labeled NCi . A fully shaded grey circle highlights the onset of a deceleration
sequence, an acceleration sequence begins with a filled black circle, and the commencement of a neutral sequence is indicated
by a fully shaded white circle; the smaller white circles represent the moment where a BB interval starts
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In our investigation, we computed the Shannon entropy for each category of run. If we denote pi,k as the
probability estimate representing the probability of encountering an interval in the BB recording that corresponds
to a specific run type of a particular length:

pi, k =

(
number of rk

i

) × i

n
, (4)

where i represents the run length and k is the run type, which can be AR, DR, NC, the Shannon entropy for this
estimator is calculated as follows:

Hk = −
max(i)k∑

i=1

pi, k∗ ln pi, k (5)

To determine the total entropy of the monotonic runs, we can utilize the following formula:

H = HDR + HAR + HNR (6)

The MATLAB programming language (The MathWorks Inc, Natick, Massachusetts, USA), version R2023, was
employed to compute the asymmetric calculation of entropy based on runs.

2.4 Fuzzy Entropy (FuzzEn)

The algorithm for Fuzzy Entropy, referred to as FuzzEn or FuzzyEn [26] determines the distance measure between
pairs of vectors using the following approach:

d[Xm(i), Xm(j)] = max
0≤k≤m−1

|u(i + kδ) − u(j + kδ)|, where j > i + δ (7)

FuzzEn utilizes the principles of fuzzy set theory [27], which involves characterizing the degree of similarity
between vectors via a fuzzy membership function that relies on calculating the distances between them. The
construction of vectors Xm(i) is carried out in a manner akin to that used in Sample Entropy (SampEn), with the
key distinction being the subtraction of the average baseline from each vector:

Xm(i) = {u(i + kδ) − u0(i) : 0 ≤ k ≤ m − 1}, (8)

where

u0(i) =
1
m

m−1∑

j=0

u(i + jδ) (9)

In the study, we used specific fuzzy membership functions to calculate the indices Bm
ij (r) and Am

ij (r), which are
defined as:

Bm
ij (r) = exp

(

−dn
m

r

)

, (10)

and

Am
ij (r) = exp

(

−dn
m+1

r

)

, (11)

where d is given in Eq. (7) and n is the exponent of the fuzzy membership function. For these computations, the
fuzzy membership function implemented in PyBioS by default is Exp (− 0.6931 × (d/r)n) [21]. We also define:

φm(n, r) =
1

N − mδ

N−mδ∑

i=1

Bm
ij (r), (12)
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and

φm+1(n, r) =
1

N − mδ

N−mδ∑

i=1

Am+1
ij (r) (13)

Thus, FuzzEn is calculated by employing the parameters m, n, r, δ as follows:

FuzzEn(u, m, n, r, δ) = −ln
(

φm+1(n, r)
φm(n, r)

)

(14)

It is important to note that, according to previous studies, Fuzzy Entropy-based algorithms provided better
accuracy compared to those based on Sample Entropy (SampEn) for analyzing short-term physiological signals
[28]. Consequently, FuzzEn was chosen over SampEn for implementation in this study.

2.5 Multiscale Fuzzy Entropy (MFE)

We calculated the Multiscale Fuzzy Entropy (MFE) from the BB time series using the FuzzEn [29]. These calcu-
lations were performed according to the methodology of a previous study [30]. Each element of a coarse-grained
time series is calculated according to the equation:

uτ (j) =
1
τ

jτ∑

i=(j−1)τ+1

u(i), 1 ≤ j ≤ N

τ
(15)

The MFE curve was obtained for 1–20 scales (τ). Each scale defines the window length used for building the
coarse-grained time series. Then, we calculate the FuzzEn for each coarse-grained time series of the scale factor τ
[31]. The irregularities in the time series for the scale factor τ are quantified by applying FuzzEn for MFE on the
coarse-grained time series obtained, with unitary delay (δ = 1), that is:

MFE(u, m, n, r) = FuzzEn (uτ, m, n, r, δ = 1) (16)

2.6 Surrogate analysis

We analyzed surrogate datasets from our BB time series to assess the null hypothesis that these series reflect
a stationary linear Gaussian process or simple uncorrelated noise [32]. This assessment produced 200 phase-
randomized surrogates for each time series using the Iterative Amplitude-Adjusted Fourier Transform (iAAFT)
method, with the iteration count limited to 100 [33]. This procedure preserves the original amplitude distributions.
By maintaining the power spectrum, the autocorrelation function of the time series is also conserved. Upon
generating the iAAFT surrogates, we computed MFE for scales τ ranging from 1 to 20. This allowed us to
scrutinize the linear dynamics hypothesis at each τ for every BB time series of the SP, P, and C groups. A lower
MFE in the original series compared to the 5th percentile of MFE values from the surrogates at any given τ led
to reject the null hypothesis, indicating nonlinearity at that scale, in line with the approach by Silva et al. [34].

2.7 Statistical analysis

In our statistical analysis, we first examined the data distribution for the normality of C, P, and SP using the
Shapiro–Wilk test. For data sets that conformed to a normal distribution, we proceeded with a one-way ANOVA to
determine the presence of statistically significant differences among the groups. When ANOVA detected significant
differences, post hoc pairwise comparisons were conducted using the Uncorrected Fisher’s LSD test. In instances
where data did not exhibit normal distribution, a non-parametric Kruskal–Wallis test was employed. Dunn’s post
hoc test was applied for multiple group comparisons if this test indicated significant differences. Additionally, for
MFE, a two-way ANOVA was conducted, followed by a post hoc analysis using the Uncorrected Fisher’s LSD
test. Statistical significance was set at a p value of less than 0.05. All statistical analyses were performed using
GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA) version 8.02.
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3 Results

Figure 2 illustrates significant differences in G% and E among the C, P, and SP groups. Specifically, Fig. 2b shows
that G% was significantly lower in the SP (47.6 ± 2.3%) compared to the C and P groups (49.3 ± 2.6% and 50.1
± 2.3%, respectively). In Fig. 2c,E values also show significant differences; the E mean value was significantly
lower in the SP (– 1.25 ± 1.32) group compared to the C (0.48 ± 1.19) and P (– 0.16 ± 1.16). Additionally, the
%P and FuzzEn did not exhibit significant differences.

Figure 3 depicts the MFE values for the BB time series, showing maintained stability across scales 1–20 for the
C and P groups. In contrast, individuals with SP exhibit a marked escalation in MFE, beginning at scale 14 and
peaking at scale 19. This upturn suggests a considerable increase in signal irregularity. Presented as mean ± SEM,
a statistical significance is noted at scale 19 (p = 0.0360) between the C and SP groups (6.09 ± 6.22 vs. 13.67 ±
13.54, respectively), reflecting the substantial physiological variability associated with severe pre-eclampsia.

Figure 4 illustrates the results of a surrogate analysis, showing the percentage of nonlinear series across scales
1–20 for C, P, and SP. At scale 1, we observed the highest percentages of nonlinearity for all groups: C = 17.14%,
P = 13.63%, and SP = 27.27%. Following this, there is a pronounced decrease for the normotensive group, which
levels to a minimal entropy across the subsequent scales, suggesting a more predictable, less complex signal. The
SP group exhibits a variable but generally declining trend, with intermittent peaks suggesting episodic increases in
signal complexity. This pattern emphasizes the increased nonlinearity in the physiological signals of pre-eclamptic
subjects, especially at the initial scales.

Figure 5 presents box plots that compare different types of asymmetrical entropies: HDR, HAR, HNO, and H
of C, P, and SP. Notably, significant differences were observed in HDR values between the C group and the SP
group (Fig. 5a), with the SP group showing a higher median value (C: 1.005 ± 0.0828 vs. SP: 1.056 ± 0.1031; p
< 0.05). This indicates a statistical difference in the HDR measure of asymmetry between these two groups. No
other significant differences were apparent among the HAR, HNO, and H entropy measures groups.

In Table 1, we present the mean ± SD values of the number of acceleration runs (ARi), deceleration runs (DRi),
and no-change runs (NCi) observed in the original BB time series. Specifically, the maximum length observed for

Fig. 2 Box plots of different types of breathing rate asymmetry indices to evaluate the breath-to-breath (BB) signals
among healthy normotensive participants (C), moderate pre-eclampsia (P), and pre-eclampsia with severe features (SP)
groups. a Porta’s index (P%), b Guzik’s Index (G%), c Ehlers’ index (E) and Fuzzy Entropy (FuzzEn). *p < 0.05 between
C and SP; **p < 0.01 between P and SP

Fig. 3 Multiscale Fuzzy Entropy (MFE) for scales τ ranging from 1 to 20 of breath-to-breath (BB) time series among
healthy normotensive participants (C), moderate pre-eclampsia (P), and pre-eclampsia with severe features (SP) groups.
Data are shown as mean ± SEM. °p < 0.05 between C vs SP
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Fig. 4 Percentage of
nonlinear series (%) of
Multiscale Fuzzy Entropy
(MFE) across 20 scales.
The gray circle represents
the control group, the black
circle represents the
preeclampsia group, and the
white circle represents the
severe preeclampsia group

Fig. 5 Box plots of different features of asymmetrical entropy to evaluate the BB time series between normotensive par-
ticipants (C), moderate pre-eclampsia (P), and pre-eclampsia with severe features (SP) groups. a Entropy of deceleration
runs (HDR), b entropy of acceleration runs (HAR), c entropy of no change runs (HNO), and d total entropy (H)

Table 1 Run comparison
of the number of runs of
different lengths in
normotensive subjects (C),
moderate pre-eclampsia
(P), and severe
pre-eclampsia (SP)

Runs C P SP

DR1 14.9 ± 5.9 13.4 ± 4.6 13.9 ± 4.6

AR1 14.9 ± 5.1 13.4 ± 3.3 14.1 ± 2.7

NC1 0.1 ± 0.4 0.3 ± 0.4 0.1 ± 0.5

DR2 9.1 ± 3.5 9.2 ± 2.6 8.4 ± 2.4

AR2 8.6 ± 3.7 9.2 ± 3.5 9.0 ± 3.1

NC2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DR3 3.9 ± 1.8 3.7 ± 1.6 3.9 ± 1.7

AR3 4.0 ± 1.8 3.6 ± 1.9 3.8 ± 1.8

NC3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DR4 1.6 ± 1.1 1.4 ± 1.1 2.0 ± 1.2

AR4 1.7 ± 1.1 1.4 ± 1.3 1.5 ± 1.1

NC4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DR5 0.5 ± 0.8 0.6 ± 0.8 0.4 ± 0.6

AR5 0.4 ± 0.6 0.5 ± 0.8 0.3 ± 0.6

NC5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

DR6 0.1 ± 0.3 0.1 ± 0.3 0.1 ± 0.3

AR6 0.2 ± 0.5 0.1 ± 0.3 0.1 ± 0.5

NC6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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both acceleration and deceleration runs was 6, whereas for no-change runs, only a length of 1 was observed. No
significant differences were observed among ARi, DRi, and NCi for the studied groups.

4 Discussion

This study explored features of complexity, including the asymmetry (time irreversibility) of short-term breath-to-
breath variability in breathing rate among women with severe and moderate pre-eclampsia symptoms compared to
those with normal blood pressure. Our findings can be summarized into three key points: (1) women with severe
pre-eclampsia may exhibit higher short-term BRA or time irreversibility, characterized by a reduced contribution of
breathing rate decelerations compared to normotensive women and those with moderate pre-eclampsia; (2) women
with severe pre-eclampsia showed higher irregularity in BRV compared to normotensive women, particularly a more
irregular behavior of decelerations of breathing rate; (3) similarly, women with severe pre-eclampsia demonstrated
greater nonlinearity in their breathing pattern time series compared to normotensive women. These findings suggest
a potential alteration in the autonomic control of breathing rate in severe pre-eclampsia associated with a more
complex dynamics of breathing rate.

Concerning our first key finding, the results of our study highlighted significant deviations in BRA among women
with severe pre-eclampsia. Specifically, these women exhibited significant differences from the median value of
50% and 0 in indices such as G% and E . These decreases in G% and E within the severe pre-eclampsia group
indicate a deviation from the ideal symmetry of breathing patterns. Typically, median values close to 50% signify a
symmetrical distribution, reflecting an equal balance between accelerations and decelerations in the breathing rate.
However, values substantially different from 50% or 0—as observed in severe pre-eclampsia—indicate the presence
of asymmetry or time irreversibility. This physiological phenomenon may indicate a disrupted autonomic control or
breathing instability, with breathing rate decelerations less prominent compared to normotensive women or those
with moderate pre-eclampsia. Such changes are likely driven by complex interactions involving the autonomic
nervous system, cardiovascular adjustments, and systemic inflammation characteristic of this condition [35]. These
findings align with previous results from our research group, where it was found that severe pre-eclampsia could be
associated with a decrease in parasympathetic activity or an increase in sympathetic activity [9] and a reduction in
cardiorespiratory coupling [10]. According to Karmakar et al., the manifestation of asymmetry can be an expected
phenomenon of a healthy physiologic system, but it can be increased or decreased in pathologic conditions [36].

Furthermore, in our second key finding, the analysis of entropy measures provided additional insights into the
irregularity of respiratory dynamics in pregnant women with severe pre-eclampsia. Interestingly, by using the MFE
approach, it is possible to discriminate between the women with SP and those without the disease (Fig. 3, p <
0.05). The distinct patterns observed across different scales and the significant differences in the MSE of women
with severe pre-eclampsia suggest higher irregularity in breathing rate fluctuations in the SP group, which may
reflect underlying physiological perturbations associated with pre-eclampsia.

Reflecting on the heightened irregularity revealed through MFE in our study, there appears to be a consis-
tency with Anderson’s research, which identified a significant elevation in the BRV alongside other respiratory
parameters in women with raised systolic blood pressure [37]. This increase in BRV is particularly noteworthy,
as it aligns with the irregular breathing patterns—indicated by larger MFE values—that we observed in women
suffering from severe pre-eclampsia. While the causal linkage between periodic breathing and chronic hypertension
is still under investigation, the suggested autonomic dysregulation involving heightened sympathetic or reduced
parasympathetic activity might well explain the respiratory irregularities, including the variability in respiratory
rate that the MFE analysis demonstrated in the SP group.

Finally, the graphical representation in Fig. 4 suggests that the BRV among normotensive parturient women and
those with moderate pre-eclampsia exhibits a minimal contribution of nonlinear components. We thus hypothesize
that increased complexity in the time series of BB intervals in severe pre-eclampsia might represent an adverse
condition. In contrast, the BB patterns in normotensive women appear more regular or simpler, characterized by
complexity features such as lower asymmetry (time irreversibility), decreased irregularity, and reduced nonlinearity.
The surrogate analysis undertaken in our investigation reinforces our findings by highlighting the presence of
nonlinearity in the BRV of women with pre-eclampsia.

However, we must consider the limitations of our work. The relatively small cohort size and the study’s con-
finement to a single center may affect how widely our results can be applied. Moreover, other cardiovascular risk
factors should be considered in the study for all three groups, as they could have impacted our results. For instance,
significant differences were observed in mean heart rate between the control group (78.2 ± 11.7 BPM) and severe
pre-eclampsia (94.5 ± 14.4 BPM) (p < 0.0001) and between severe pre-eclampsia and pre-eclampsia (81.2 ± 16.9
BPM) (p < 0.01). This is consistent with what has been reported in the literature regarding the interaction
or dependency between the cardiac and respiratory systems [38, 39]. No significant differences were observed in
weight between the groups. BMI differences were significant between the control group (28.7 ± 4.9 kg/m2) and
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the pre-eclampsia group (31.8 ± 4.9 kg/m2) (p < 0.05). However, we consider that the changes are mainly due to
the pre-eclamptic condition.

It is important to note that, to the best of our knowledge, this is the first study to report short-term BRA
measurements in pregnant women with and without pre-eclampsia. Consequently, finding comparable results from
another research where BRA has been used was challenging. Previous studies have primarily employed BRV and
HRA measurements in physiological and pathological scenarios. For example, evidence suggests that breathing
instability, as indicated by higher BRV, is observed in obstructive sleep apnea compared to controls during wake-
fulness [40]. We speculate that increased breathing instability could be associated with greater asymmetry during
pre-eclampsia. Notably, recent studies indicate potential associations between respiratory rate and HRA [41].

Van den Bosh’s research indicates that the variability in respiratory patterns over time could serve as an indicator
for identifying individuals at risk of developing pulmonary complications [42]. The complexity of BRV is not yet
completely understood. Assessing the variability in a singular respiratory metric, such as the breathing rate, might
not encapsulate the full scope of variability in the respiratory system. Conditions such as Chronic Obstructive
Pulmonary Disease, restrictive lung diseases, chronic pulmonary disorders originating in infancy, non-rapid eye
movement sleep, and cognitively demanding tasks are known to reduce the variability in respiratory patterns. In
contrast, this variability tends to increase among elderly individuals when they are engaged in complex numerical
tasks, in hypoxic conditions, and among patients with asthma, hypertension, or anxiety disorders. Comprehensive
research is still needed to fully grasp the implications of BRV in the domains of critical care.

5 Conclusion and outlook

This investigation has cast light on the features of complexity in short-term breathing rate asymmetry (BRA) and
its variability (BRV) among women with varying severities of pre-eclampsia compared to normotensive pregnant
women. The study showed that severe pre-eclampsia is associated with a higher degree of short-term BRA, under-
pinned by a distinctive reduction in breathing rate decelerations and an overall higher irregularity and nonlinearity
in the breath-to-breath (BB) time series. Thus, the dynamics of short-term BB breathing rate variability appear
to be more complex in severe pre-eclampsia than in the more regular or simpler patterns observed in normotensive
women or those with moderate pre-eclampsia. This suggests that the autonomic control of respiratory rate may
be disrupted in severe pre-eclampsia, potentially leading to more complex breathing dynamics.

Our data demonstrated significant asymmetry in breathing patterns, particularly in the severe pre-eclampsia
group, as reflected by significant deviations from median values in indices measuring time irreversibility. The
implications of these findings are relevant, suggesting alterations in autonomic function and potentially contributing
to the systemic pathophysiological changes characteristic of severe pre-eclampsia. Overall, the study underscores
the potential of BRV and BRA as noninvasive markers for assessing the severity of pre-eclampsia and for monitoring
the condition in expectant mothers. With further research, these measures could prove to be invaluable tools in
obstetrics, potentially offering a window into the intricate interplay of physiological systems during pregnancy and
their response to pathological states.
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Peña-Castillo, E. Nsugbe, M.Á. Porta-Garćıa, Y. Mina-Paz, Changes in the autonomic cardiorespiratory activity in
parturient women with severe and moderate features of preeclampsia. Front. Immunol. (2023). https://doi.org/10.
3389/fimmu.2023.1190699
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Proceedings of the computing in cardiology; Vol. 39 (2012)

37. D. Anderson, J. Mcneely, M. Chesney, B.G. Windham, Breathing variability at rest is positively associated with 24-h
blood pressure level. Am. J. Hypertens. 21, 1324–1329 (2008). https://doi.org/10.1038/ajh.2008.292

38. J.S. Gasior, J. Sacha, P.J. Jelen, J. Zielinski, J. Przybylski, Heart rate and respiratory rate influence on heart rate
variability repeatability: effects of the correction for the prevailing heart rate. Front. Physiol. (2016). https://doi.org/
10.3389/fphys.2016.00356

39. J. Mehlsen, K. Pagh, J.S. Nielsen, L. Sestoft, S.L. Nielsen, Heart rate response to breathing: dependency upon breathing
pattern. Clin. Physiol. (1987). https://doi.org/10.1111/j.1475-097X.1987.tb00153.x

40. A. Pal, F. Martinez, M.A. Akey, R.S. Aysola, L.A. Henderson, A. Malhotra, P.M. Macey, Breathing rate variability in
obstructive sleep apnea during wakefulness. J. Clin. Sleep Med. 18, 825–833 (2022). https://doi.org/10.5664/jcsm.9728

41. Y.P. Wang, T.B.J. Kuo, G.Z. Wang, C.C.H. Yang, Different effects of inspiratory duration and expiratory duration on
heart rate deceleration capacity and heart rate asymmetry. Eur. J. Appl. Physiol. (2024). https://doi.org/10.1007/s0
0421-024-05433-2

42. O.F.C. van den Bosch, R. Alvarez-Jimenez, H.-J. de Grooth, A.R.J. Girbes, S.A. Loer, Breathing Variabil-
ity—Implications for Anaesthesiology and Intensive Care. Crit. Care 25, 280 (2021). https://doi.org/10.1186/s13054-
021-03716-0

123

https://doi.org/10.1016/j.cmpb.2020.105718
https://doi.org/10.1515/BMT.2006.054
https://doi.org/10.1152/ajpregu.00129.2008
https://doi.org/10.1109/TNSRE.2007.897025
https://doi.org/10.3390/e23121620
https://doi.org/10.3390/e23121620
https://doi.org/10.3390/e23121620
https://doi.org/10.1103/PhysRevLett.89.068102
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1152/japplphysiol.00059.2017
https://doi.org/10.1038/ajh.2008.292
https://doi.org/10.3389/fphys.2016.00356
https://doi.org/10.1111/j.1475-097X.1987.tb00153.x
https://doi.org/10.5664/jcsm.9728
https://doi.org/10.1007/s00421-024-05433-2
https://doi.org/10.1186/s13054-021-03716-0

	Comparison of short-term breathing rate asymmetry of preeclamptic and normotensive women in labor
	1 Introduction
	2 Methods
	2.1 Dataset description
	2.2 Signal pre-processing
	2.3 Breathing rate asymmetry (BRA)
	2.3.1 Time-irreversibility indices
	2.3.2 Monotonic runs

	2.4 Fuzzy Entropy (FuzzEn)
	2.5 Multiscale Fuzzy Entropy (MFE)
	2.6 Surrogate analysis
	2.7 Statistical analysis

	3 Results
	4 Discussion
	5 Conclusion and outlook
	References
	References


