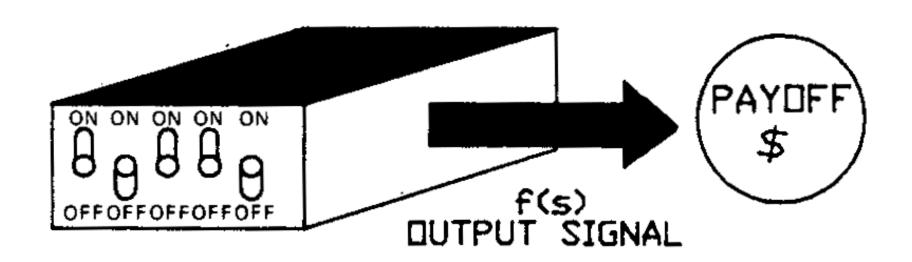


Universidad Autónoma del Estado de México Facultad de Ingeniería

El Algoritmo Genético Simple

Héctor Alejandro Montes

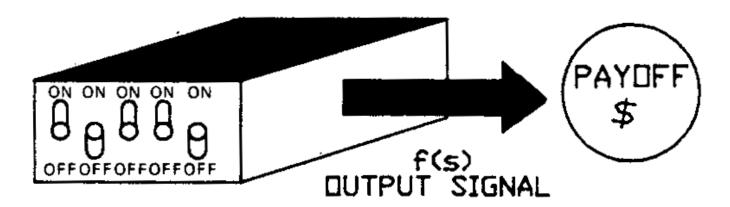

hamontesv@uaemex.mx http://scfi.uaemex.mx/hamontes

AGs vs. Métodos tradicionales

- AGs utilizan una codificación del conjunto de parámetros, no con los parámetros.
- AGs buscan en una población de puntos y no en un sólo punto.
- AGs emplean información de utilidad (función objetivo), no diferenciales u otro conocimiento auxiliar.
- AGs utilizan reglas de transición probabilísticas y no reglas determinísticas.

Problema ejemplo

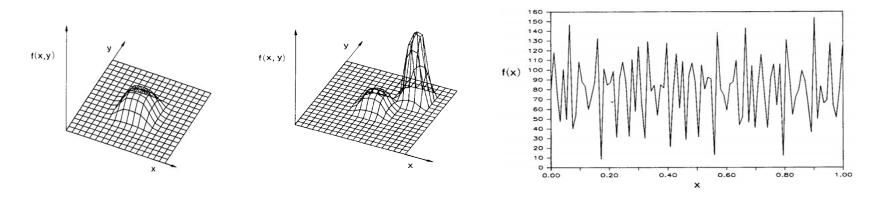
 El problema de optimización caja negra con cinco interruptores on-off.



Codificación

- Los AGs sólo requieren una codificación y una medida de utilidad: NO necesitan saber el funcionamiento de la caja negra.
- El objetivo es poner los interruptores de tal forma que se obtenga el valor máximo en la señal de salida medido por f(s).
- Primero, codifiquemos los interruptores como una cadena de longitud finita.

Codificación simple


- 1 si el interruptor esta encendido (on)
- 0 si el interruptor esta apagado (off)
 - Ejemplo: 01001

No todas las codificaciones son tan obvias

Métodos tradicionales de optimización

- Se mueven tímidamente de un punto a otro en el espacio de búsqueda utilizando alguna regla de transición.
- Éstos métodos usualmente carecen de una estrategia para salir de falsos picos en espacios multi-modales.

AGs

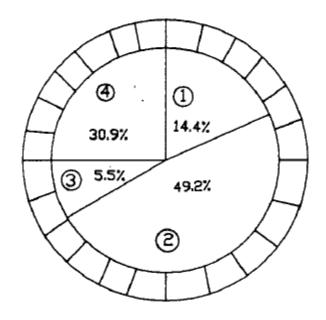
- Trabajan simultáneamente sobre un grupo de puntos (una población de cadenas), explorando varios puntos en paralelo
- Se reduce la probabilidad de encontrar un falso pico, a diferencia de los métodos que se mueven punto-a-punto.

Optimizando la "Caja Negra"

- Los AGs comienzan con una población de cadenas usualmente generada al azar.
- Generan luego poblaciones sucesivas de cadenas a partir de la población actual.
- Ejemplo: población inicial de tamaño n = 4 (pequeña para un AG)
 - 01101
 - **11000**
 - **01000**
 - **10011**

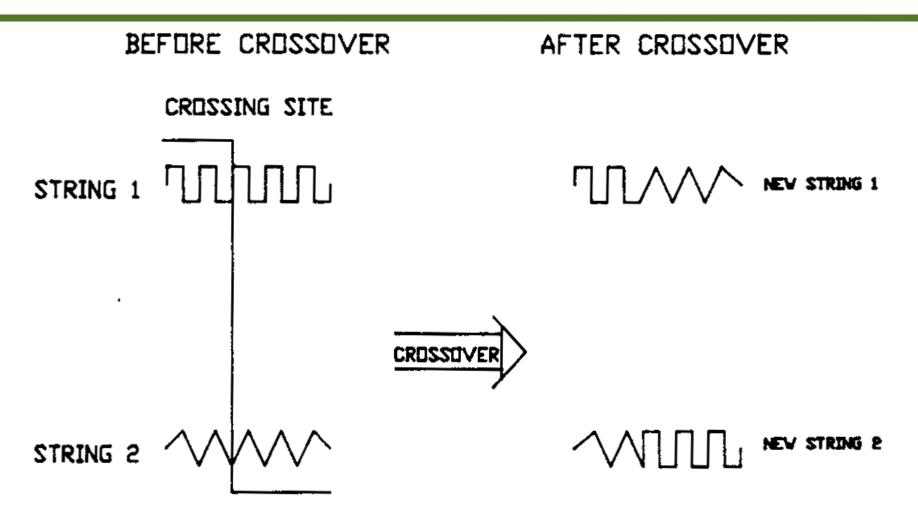
Operadores básicos

- Debemos definir operaciones que tomen esta población inicial para generar las siguientes y que mejoren con el tiempo
 - Reproducción
 - Cruza
 - Mutación


- Proceso en el que los individuos (cadenas) se copian de acuerdo a sus valores de aptitud f (medida de ganancia, utilidad o calidad)
- Los individuos con un valor f más alto tienen una probabilidad mayor de contribuir con descendencia a la siguiente generación

- Versión artificial de las selección natural
 - Supervivencia del más apto
- En la naturaleza esa aptitud esta determinada por la habilidad de la criatura para sobrevivir
- En nuestro escenario artificial, la función objetivo (o de aptitud, o fitness) es el árbitro que dicta la supervivencia de la cadena

 Suponga que los valores de la función de aptitud f son:


No.	String	Fitness	% of Total
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9
Total		1170	100.0

 Imaginen una ruleta sesgada o ponderada donde cada cadena de la población actual tiene una sección con tamaño proporcional a su fitness.

- Para seleccionar los individuos a reproducir, simplemente gire la ruleta
- Se requieren dos padres para generar descendencia
- Una vez que los individuos que se reproducirán han sido seleccionados, se utiliza cruza y mutación para producir una nueva población

Cruza simple

Cruza simple

- Una posición k se selecciona al azar de manera uniforme entre 1 y la longitud total L de la cadena
- Dos nuevas cadenas se crean intercambiando todos los caracteres entre k+1 y L

Cruza simple, ejemplo

- Suponga que A1 y A2 son individuos que han sido elegidos usando la ruleta y que la posición de cruza elegida al azar es la 4:
 - $-A_1 = 0 1 1 0 | 1$
 - $-A_2 = 110000$
- La cruza produce estos dos nuevos individuos:
 - $-A'_1 = 01100$
 - $-A'_2 = 11001$

que formarán parte de la nueva generación

Reproducción y Cruza

- Sorprendentemente simple, involucra:
 - Generación de números aleatorios
 - Copias de cadenas
 - Intercambios parciales de cadenas
- La combinación de reproducción y cruza le dan a los AGs mucho de su poder

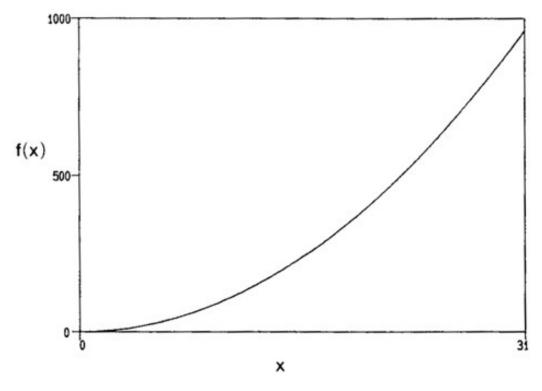
AGs

- Explotan la información de la población
 - Reproducen individuos de alta calidad de acuerdo a su desempeño (fitness)
 - Cruzan porciones de éstos individuos con porciones de otros individuos de alto desempeño
- Especulan sobre nuevos individuos contruídos por porciones "buenas" de individuos anteriores

- Es la alteración ocasional (con baja probabilidad) del valor de una posición en el individuo
- Por sí sola, es una búsqueda aleatoria
- Cuando se utiliza con Reproducción y Cruza, es una estrategia contra la pérdida prematura de información útil

- Necesario porque, aunque Reproducción y Cruza buscan de manera efectiva, ocasionalmente pueden volverse muy especializadas y perder material genético útil
- El operador de Mutación proteje contra una pérdida irrecuperable manteniendo la diversidad

- Su papel es secundario en un AG
- La frecuencia de mutación es del orden de una mutación por cada mil intercambios
- La proporción es similarmente pequeña (o más pequeña aún) en la naturaleza


Estructura genral de un AG

Procedimiento Algoritmo Genético

```
Inicio (1)
         t = 0;
         inicializar P(t);
         evaluar P(t);
         Mientras (no se cumpla la condición de parada) hacer
         Inicio(2)
                   t = t + 1
                   seleccionar P(t) desde P(t-1)
                   recombinar P(t)
                   mutación P(t)
                   evaluar P(t)
         Final(2)
Final(1)
```

Ejemplo

Maximizar la función f(x) = x², donde x varía entre 0
 y 31

3 de oct de 2015 Héctor Alejandro Montes

Preparación previa

- Codificación: binaria entera sin signo de longitud 5
- Tamaño de población = 4
- Población inicial generada al azar

String No.	Initial Population (Randomly Generated)	x Value $\binom{\text{Unsigned}}{\text{Integer}}$	f(x)	pselect, $\frac{f_i}{\Sigma f}$	Expected count $\frac{f_t}{f}$	Actual Count from Roulette Wheel	Mating Pool after Reproduction (Cross Site Shown)	Mate (Randomly Selected)	Crossover Site (Randomly) Selected	New Population	.x Value	f(x)
1	0 1 1 0 1	13	169	0.14	0.58	1	0 1 1 0 1	2	4	0 1 1 0 0	12	144
2	11000	24	576	0.49	1.97	2	11000	1	4	11001	25	625
3	0 1 0 0 0	8	64	0.06	0.22	0	1 1 0 0 0	4	2	1 1 0 1 1	27	729
4	10011	19	361	0.31	1.23	1	10 011	3	2	10000	16	256
Sum			1170	1.00	4.00	4.0						1754
Average			293	0.25	1.00	1.0						439
Max			576	0.49	1.97	2.0						729

Proceso

Selección de ruleta

- Individuo 1 y 4: una copia
- Individuo 2: dos copias
- Individuo 3: sin copias

Cruza simple

- Los sitios de cruza se seleccionan al azar
- Se establece una probabilidad de cruza (0.65)

- Probabilidad de cruza = 0.001
- 20 bits tranferidos, esperamos 20 x 0.001 bits a mutar

Evaluar nueva población

- Decodificar los nuevos individuos
- Calcular los valores de aptitud: fitness
 - El promedio de *fitness* ha mejorado de 293 a 439 en una generación
- Seguir con la nueva generación

Ejecución de un AG

- En cada generación:
 - Un nuevo conjunto de soluciones se crea utilizando partes de sus predecesores más aptos
 - Ocasionalmente, partes nuevas también se añaden y se prueban
 - Los AGs no son simples búsquedas al azar
 - Explotan información histórica para especular en nuevas direcciones de búsqueda en busca de mejorar