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Abstract. Classification methods usually exhibit a poor performance when
they are applied on imbalanced data sets. In order to overcome this problem,
some algorithms have been proposed in the last decade. Most of them generate
synthetic instances in order to balance data sets, regardless the classification
algorithm. These methods work reasonably well in most cases; however, they
tend to cause over-fitting.

In this paper, we propose a method to face the imbalance problem. Our
approach, which is very simple to implement, works in two phases; the first one
detects instances that are difficult to predict correctly for classification methods.
These instances are then categorized into “noisy” and “secure”, where the for-
mer refers to those instances whose most of their nearest neighbors belong to the
opposite class. The second phase of our method, consists in generating a number
of synthetic instances for each one of those that are difficult to predict correctly.
After applying our method to data sets, the AUC area of classifiers is improved
dramatically. We compare our method with others of the state-of-the-art, using
more than 10 data sets.
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1 Introduction

Achieving a good performance on imbalanced data sets is a challenging task for
classification methods [3]. They usually focus on majority class, almost ignoring the
opposite class [8]. Currently, there are many real-world applications that generate this
type of data sets, for example: software defect detection [6], medical diagnosis [1],
fraud detection in telecommunications [4], financial risks [7] and DNA sequencing [9],
among others. In this type of applications, there are two objectives in conflict, on the
one hand, for the classifier should be more important to predict the minority class
instances with the minimal errors, and on the other hand, the classification accuracy for
majority class instances should not be severely damaged. The AUC ROC measure is
one of the most widely used to capture this requirement.

The problem of classification on imbalanced data sets has attracted the attention of
the machine learning and data mining communities in the last past few years [2]. The
state-of-the-art methods to deal this problem can be categorized into:
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(1) external methods, which pre-processes the data sets to balance them before
applying a classification method;

(2) internal methods, which modify the algorithms to make them more suitable to this
problem;

(3) ensembles, that use two or more classifiers and then combine their outputs to
predict the class;

(4) cost-sensitive methods, which use cost matrices to penalize misclassification, or

(5) other methods, that include combinations of the strategies mentioned, and
application of genetic algorithms.

External methods work at the data level, regardless the classifier to be used. These
methods are based on two main techniques: under-sampling and over-sampling, both
of them balance the data sets, either by removing objects from the majority class or
inserting synthetic minority class objects, respectively. One of the most representative
methods is SMOTE. It balances data sets by creating synthetic instances between the
line that joins a minority class instance and their nearest neighbors. Variants of SMOTE
guide the creation of minority instances towards specific parts of the input space,
considering characteristics of the data such as density of minority class instances, the
decision boundaries or using ensembles of classifiers.

In this paper, we propose a method to pre-process imbalanced data sets for clas-
sification. It works in two phases: the first one identifies instances, which are difficult to
predict for a classification method. These instances are important because represent
regions in the input space where the classifier is unable to perform adequately, and
therefore, it is necessary to clarify the concepts or sub-concepts by generating synthetic
instances in such regions. The instances that are difficult to predict, are categorized into
“noisy” and “secure” instances, where the former refers to those which most of their
nearest neighbors belong to the opposite class. Noisy instances are usually near to
decision boundaries, or in overlapped class regions [5]. The second phase of our
method, consists in generating a number of synthetic instances considering the noisy
ones. Depending on the imbalance ratio, the number of generated instances is adapted.
We tested our method on 11 data sets, and compare the performance of C4.5 classifier
using other balancing algorithms. According to the results, AUC is improved signifi-
cantly in most cases.

The rest of this paper is organized as follows. Our proposal is shown in detail in
Sect. 2. The experiments, results and a discussion is shown in Sect. 3. The conclusions
and references are in the last part of this paper.

2 Method Based on Observations of Errors

The method presented in this paper is effective and very easy to implement. Different
from SMOTE and other similar algorithms that generate instances regardless the
classification method or class distributions, our approach takes advantage of
observations about the correctness of predictions. These are used to identify difficult
regions of the input space, and then the generation of synthetic instances focuses on
such regions.
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Given an imbalanced data set: X = {(x;, yi)ile, vie {+1,—1}}, where N is the
number of instances, y; = + 1 is the minority class, and y; = — 1 the majority class. In our
method, we create some sets, in order to detect the regions of the input space are
difficult to predict for the classifier.

Minority = {(x;, ¥;), x € X, y; = + 1}, this set contains all the instances of the
minority class in X. The following two subsets of X, contain only instances of the
majority class:

Tﬂwj = {(xivyi)vxi € Xandxi g TeMj;yi — _1}
TeM; = {(xi,¥i),x € Xandx; & TrM;,y; = ~1}

such that TrM; U TeM; = X — Minority, and TrM; N TeM, is empty.
The elements of TrM; and TeM; are chosen randomly. The size of these sets is 60 %
of |X — Minority| and 40 % of |X — Minoriry|, respectively.

Algorithm 1. Counter of errors in predictions

Input : X: Training data set, C: Type of classifier, I: Number of iterations
Output: £: Mean of of missclassifications for each instance
begin
for j«+ 1to I do
Create the sets T'r; and Te; and Build a classifier C of type C from T'rj;
foreach instance x € Te; do
Use C to predict the class of z;
if C incorrectly classifies x then
] Update the counter of errors £ for this instance;
end
end
end
return mean( £)
end

The sub-training set, Tr;, is composed of all instances of the minority class and the
elements of TrM;: Tr; = TrM, U Minority. Also, we create the sub-testing set, Tey,
composed of all instances of the minority class, and those instances of the majority
class that are not in Tr;: Te; = TeM; U Minority. Having these sets created, a classifier is
trained and tested several times. The errors in predictions are stored in a vector € to be
analyzed later. Algorithm 2 shows the pseudo code that implements this part of our
method

Once ¢ obtained, those instances which have been classified incorrectly a number of
times that exceeds a certain threshold, are categorized into two types:

(a) Noisy instances, difficult to predict instances and most of their k-nearest neighbors
have opposite class.

(b) Secure instances, difficult to predict instances and most of their k-nearest neigh-
bors have the same class.

During the experiments, we found that £ = 5 produces good results for most data
sets. Different from other approaches that only take into account a number of nearest
neighbors, in our approach, the noisy instances play an important role in the generation
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of new synthetic ones. The latter are generated in the lines that joins a noisy instance
and its nearest L-neighbors.

2.1 Run-Time Complexity

In our method, the separation of majority and minority class instances is realized in
linear time, O(n). The creation of sub-training and sub-testing sets is also a linear time
task. Training time varies form a type of classifier to other, we represent it with
T(|Tr;|). The prediction of the class for each an instance depends on the classification
method, so we represent time with C, therefore, the time to predict all the instances in
the sub-testing set is |Te;|C. Updating the vector ¢ is a constant time task, Cy. In current
implementation of the algorithm, the generation of synthetic instances requires a linear
search of the L-nearest neighbors for each noisy instance, the worst case is O(nz). Our
method is slow for large data sets. The time-complexity of our method is therefore:

O(n) + 10(n) + IT(Tr;) + 1|Te;|C + ICo + 10(n*) ~
IT(0.6n) + 10.4nC + 10(n?)

3 Experiments and Results

In order to observe how the performance of classifiers is improved by pre-processing
the data with our method, we select the C4.5 classifier, which is one of the most
commonly algorithms chosen to test the performance of balancing methods. The data
sets used to test the experiments are publicly available on the Internet,' their main
features are shown in Table 1.

Table 1. Data sets for experiments

Data set D S IR Data set D |S IR
yeast-2_vs_4 8| 514| 9.08|glass-0-1-6_vs_2 99| 192|10.29
glass2 9| 214| 11.59]ecoli4 77| 336|15.80
page-blocks-1-3_vs_4 | 10| 472 | 15.86 | abalone9-18 88| 731|164
glass-0-1-6_vs_5 9| 184 19.44 | glass5 99| 2141|2278
car-good 61,728 | 24.04 | yeast5 881,484 |32.73
abalonel9 814,174 129.44

In Table 1, D is the number of attributes, S is the number of instances, and IR is the
imbalance ratio. In these sets IR varies from 9, up to more than 120. We present the
comparative of our method against SMOTE, re-sampling with and without

! http://sci2s.ugr.es/keel/datasets.php.
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replacement. SMOTE algorithm generates synthetic instances using the 5 nearest
neighbors, re-sampling makes copies of minority class instances.

All the experiments were conducted on a computer with the following character-
istics: 2.6 GHz Intel Core i5 processor, 8 GB RAM, Mavericks Operating System. The
size of RAM allocated to the JVM is 256 MB. In the experiments, each data set was
partitioned into two subsets, randomly: training and testing. The former contains 60 %
of instances of data set; the latter contains the rest. The training set is processed using
our method, SMOTE and re-sampling with and without replacement. Then, a classifier
C4.5 is trained with the processed data. The testing set is used to test performance of
classifier. This process was repeated 30 times and the average is reported in the results.

4 Results

The application of Algorithm 2 provides with the information presented in Table 2,
whose column have the following meaning. Data set: Name of data set analyzed; P:
Number of minority class instances in the sub-training set; N: Number of majority class
instances in the sub-training set; D,: Number of minority class instances which are
difficult to predict for the classifier; D,: Number of majority class instances which are
difficult to predict for the classifier; N,,: Number of noisy minority class instances; N,,:
Number of noisy majority class instances. In order to achieve repeatable results for
other researchers, the C4.5 (J48 Weka implementation) classifier was used with default
parameter values. The threshold used in the experiments was set to one.

Table 2. Identification of difficult instances for the C4.5 classifier

Data set P |N D, | D, | N, | N, | Data set P |N D, | D, | N, |N
yeast-2_vs_4 37| 32311 |19| 9| 2 |glass-0-1-6_vs_2 | 14| 121| 4|18 1
glass2 15| 135/15|34 |15 | 2 |ecoli4 15| 221 4| 6| 3|0
page-blocks-1-3_vs_4 23| 308| 0| 2| 0| O |abalone9-18 32 480119 (27191
glass-0-1-6_vs_5 70 122) 1| 6| 1| 1 |glass5 8| 142 1| 5| 1|0
car-good 531,157 |53 |70 |53 | 20 | yeast5 371,002 2|22| 28
abalonel9 2512897125 0(25| O

Based on the average results shown in Table 2, the following can be observed:

(1) Most of the instances that are difficult to predict, belong to majority class. This is
probably due to between-class imbalance, because of the large number of majority
class instances.

(2) In general, the minority class instances that are difficult to predict, are also noisy
instances. We attribute this to within-class imbalance.

(3) Most of majority class instances that are difficult to predict, are secure instances.
This result is different from the informed in the literature, further investigation is
necessary.

(4) All the minority class instances of data sets glass2, car-good and abalonel9 are
noisy instances, i.e., these data sets do not contain secure instances of the minority
class.
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(5) Data sets glass-0-1-6_vs_5, glass5 a yeast 5, contain just a few noisy instances of
minority class. This makes difficult for our method to generate many instances.

In our method, we use the noisy instances to generated a number of synthetic
instances, such that a balance of approximately 30 % is achieved. The underlying idea
is to warn the classifier on regions not considered important, but they are.

Table 3 shows the area under the ROC for classifier C4.5. None corresponds to the
performance of classifier without a pre-processing step of data. Proposal column is the
method presented in this paper. SMOTE is the classic method with K = 5 nearest
neighbors. R1 and R2 are re-sampling of minority class instances with and without
replacement, respectively. In general, our method outperforms SMOTE, R1 and R2 in
the cases where the number of difficult and noisy instances is not too small. In the other
cases, our method produces results that are acceptable. Due to space issues, we don’t
present more results with other classification methods.

Table 3. AUC for classifier C4.5

Data set None | Proposal | SMOTE | R1 R2

yeast-2_vs_4 0.895(0.913 0.880 | 0.857(0.895
glass-0-1-6_vs_2 | 0.675 | 0.730 0.712  0.634|0.675
glass2 0.744 1 0.778 0.689 | 0.657 |0.744
ecoli4 0.8210.887 0.875 ]0.869 | 0.821
page-blocks-3vs4 | 0.969 | 0.987 0.978 | 0.978 |0.969
abalone9-18 0.619 | 0.685 0.692 | 0.622|0.619
glass-0-1-6_vs_5 | 0.875|0.965 0.967 | 0.903|0.875
glass5 0.953 | 0.862 0.905 |0.867|0.953
car-good 0.444 10911 0.942 | 0.904 |0.444
yeast5 0.88210.921 0.907 |0.873]0.882

5 Conclusions

The performance of classifiers on imbalanced data sets is generally unacceptable. This
problem is complex, since there are many factors involved, such as rare instances,
between-class imbalanced within-class imbalance and noisy instances.

In this paper, we introduce a method to tackle with the classification task on
imbalanced data sets. Different from other state-of-the-art proposals, our method is
based on the philosophy that classification algorithms need to be involved in the
generation of synthetic instances. We identify those instances that are difficult to
predict correctly for a classifier. These instances are considered to detect regions in the
input space that need to be reinforced with new synthetic instances. The method
proposed in this paper was tested with 11 data sets and compared with other
state-of-the-art methods. According to the results, our approach outperforms the current
methods in most cases.
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