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a b s t r a c t

Arsenic (As) in groundwater for domestic use poses a worldwide threat to public health, most notably in
rural areas. The aims of this study were: first, determine groundwater composition in a mining area in
central Mexico (Huautla); second, assess As exposure through human groundwater consumption and;
third, develop and test a household filter to obtain drinking water for these rural communities.

From the 17th century through the 1990s, mines in the area produced Ag-galena and sphalerite from
volcanic rock. Groundwater flooded the mines when they were abandoned due to low silver prices. Local
households now use the water to meet domestic needs. Water from the mines was found to have high As
content (0.04e0.26 mg L�1) and Fe, Mn, Pb and Cd were also above Mexican drinking water standards
and WHO guidelines. All the population in the Huautla community was exposed to the metalloid through
water used in food preparation.

The best As removal was obtained with a filter using oxidized commercial fiber (HCl 2N as oxidant).
Concentrations in the effluent were below Mexican drinking water standards (0.025 mg As L�1 water)
during the 105-day (2520 h) filter operation, with a maximum As removal efficiency of 95.4%. The
household filter was simple, low-cost and may be very attractive for As removal in rural areas in
developing countries.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Mexico, arsenic in groundwater is becoming a problem in
regions such as La Comarca Lagunera, Salamanca, San Luis Potosi
and Zimapan, among many others (Rodriguez et al., 2004;
Armienta and Segovia, 2008). Its presence is associated with nat-
ural and anthropogenic sources and its origin in mining areas is
frequently linked to naturally high arsenic levels in rock, extraction
and processing of ores and leaching of tailings (Rodriguez et al.,
2004; Iavazzo et al., 2012). Moreover, abandoned mines typically
were flooded due to rising groundwater and it is possible, therefore,
to occur significant arsenic concentrations. Because of ready
availability, water in flooded mines is used as drinking water and
for livestock.

Health hazards stem from the use of water containing arsenic
for drinking and cooking. Since these activities account for only a
small percent of total domestic water consumption, this strongly

suggests that it is economically attractive to remove arsenic only
from water used for drinking and cooking. Arsenic removal should
consequently be done at the household level with point-of-use
systems. This approach would be particularly effective in rural
communities lacking centralized water supply systems.

1.1. As removal technologies

Different treatment technologies to reduce concentrations of
arsenic in drinking water are available or under investigation. Some
of these include coagulation-sedimentation-filtration, nano-
filtration, reverse osmosis, fluidized-bed sand reactor, and sub-
surface groundwater treatment (Mohan and Pittman, 2007;
Pokhler and Viraraghavan, 2009). Nevertheless, these technolo-
gies are inappropriate for application in rural communities e

especially in Bangladesh, West Bengal, India, Vietnam, Taiwan, In-
ner Mongolia, Hungary, Romania and Latin America where arsenic-
related problems are most pronounced (Berg et al., 2006; Sarkar
et al., 2008; Pokhler and Viraraghavan, 2009).

There are a variety of household-level arsenic removal tech-
nologies, including adsorption onto iron and/or manganese oxides,
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activated alumina filters and different coagulationesedimenta-
tionefiltration bucket treatment units (Petrusevski et al., 2002;
Driehaus, 2002; Leupin and Hug, 2005; Giles et al., 2011). Accord-
ing to Ngai et al. (2007), more than 50 household treatment tech-
nologies exist worldwide.

Simple filters with iron in various forms e such as filings,
turnings, or nails e have shown great promise for some years in
Bangladesh (Hussam and Munir, 2007).

The well-head unit, for example, is a simple type of filter
described by Sarkar et al. (2008) in which entering water passes
over a splash plate, then droplets formed subsequently become
oxygenated, and during the second removal process activated
alumina and/or an arsenic-selective hybrid anion exchanger (HAIX)
acts as a regenerable sorbent material. The 2-Kolshi System (Ngai
et al., 2007) removes arsenic by co-precipitation and filtration
mechanisms. This consists of a 20-L plastic mixing bucket, a
filtration unit comprised of two ceramic pots and chemical packets
containing ferric chloride (as a coagulant), calcium hypochlorite (as
an oxidant and disinfectant) and charcoal powder (as an
adsorbent).

In the KanchanTM Arsenic Filter (KAF) (Ngai et al., 2006), air
serves as an oxidant and zero-valent iron as a sorption media in the
filter. Fe(III)(hydr) oxides with high As-sorption capacity are
formed. The filter material -such as iron metal- is cheap and
available even in rural villages in developing countries. The effi-
ciency of arsenic removal with this filter was 88e95%. The KAF is
also considered to be a Biosand Filter (BSF). Unlike a simple sand
filter which removes particles by mechanical straining only, a BSF
has the capacity to remove pathogens as well.

The KAF is a modified slow sand filter with additional arsenic
removal capacity, consisting of a plastic or concrete container filled
with gravel, sand and iron nails. At the top of the filter, non-
galvanized iron nails are exposed to air and water and thereby
rust quickly, producing ferric hydroxide on the surface of the nails,
which absorbs arsenic from the water. Some arsenic-loaded iron
particles are flushed onto the sand layer below and are trapped in
the top few centimeters of the fine sand due to straining (Ngai et al.,
2007). As ferric hydroxide particles “exfoliate” from the iron nails,
new iron surfaces are created, providing additional arsenic
adsorption capacity (Ngai et al., 2006).

The 3-Kolshi System/SONO Filter was initially developed by the
SONO Diagnostic Center in Bangladesh and consists of three clay
pots stacked vertically. It is based on an indigenouswater treatment
practice, as described by Hussam andMunir (2007) who developed

and produced the SONO filters (Ngai et al., 2007). Arsenic is
removed by adsorption to iron filings contained in the top of the
pot. Ongoing improvement of the filter system has led to a new
filter model, the SONO45-25 filter. The efficiency of arsenic removal
obtained with this filter was 90e99%.

In the 2-Kolshi System arsenic is removed by co-precipitation
and filtration mechanisms. This consists of a 20-L plastic mixing
bucket, a filtration unit comprised of two ceramic pots and chem-
ical packets containing ferric chloride (as coagulant), calcium hy-
pochlorite (as oxidant and disinfectant), and charcoal powder (as
adsorbent) arsenic removal with this system was 80e95% (Ngai
et al., 2007).

1.2. Study site

The study area is known as the Huautla Mining District. It is
located in the southern part of the State of Morelos, central Mexico
(Fig. 1), between 18�400N and 18�200N and 90�100W and 90�500W,
at 911 m above sea level. The climate is warm and subhumid with
22.3 �C annual mean temperature and 867.5 mm precipitation.

Exploitation of silver contained in galena (PbS) and sphalerite
(ZnS) started in the 17th century. Other metals of economic interest
produced from themines included Cu, Pb, Zn and Au. The geology is
characterized by Tertiary volcanic rocks of intermediate composi-
tion such as andesites, dacites and trachites in the form of lava
flows and volcanoclastic deposits. Ore minerals are present as
filling in faults with predominantly east-west direction, generally
with tectonic breccias. Solutions enriched in silica produced sinter
formations which became clay deposits with high iron content.
These were subsequently replaced by calcite (Camprubi and
Albison, 2006). The main minerals exploited in the district were
Argentite, stromeyerite, argentiferous galena, sphalerite, malachite,
azurite, cerussite and native silver. The main economic minerals
were argentite, stromeyerite and argentiferous galena and acces-
sory minerals were barite, quartz, amethyst quartz, pyrite and
calcite.

Mining ceased at the end of the 1990s due to low silver prices.
Mines were abandoned without maintenance and tunnels flooded.
Water from abandoned mines is used by the population of Huautla
(1200 inhabitants) to meet domestic and livestock needs, as water
supply is problematic in the region.

The aims of this study were: first, to investigate the physico-
chemical characteristics of arsenic-contaminated groundwater and
their relation with geological media; second, to evaluate the

Fig. 1. Location map of the study area. State of Morelos (Central Mexico).
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exposure of the population to groundwater arsenic and; third, to
develop a household filter using locally available materials such as
iron spikes, commercial fiber (stainless steel material to remove
grease and residue), fine gravel and sand.

2. Materials and methods

2.1. Water quality analyses

In 2006e2007,12 groundwater samples were collected from the
workings of four abandoned mines (Pajaro Verde, Presita, Santiago
and Tlachichilpa), according to Mexican standard NOM 230-SSA1-
2002. Temperature, pH, electric conductivity (EC) and redox po-
tential (Eh) were determined in the field using portable equipment
(Checkmate Hand-Held Analysis System).

The samples were filtered (0.45 mm disk filter) and nitric acid
was added to aliquots for cation analysis. The samples were stored
in a refrigerator at 4 �C. These measurements followed Mexican
guidelines and used APHA (2005) methods. Alkalinity and chloride
concentration were determined by titration, sulfate and nitrate by
spectrophotometry, and major cations (Ca2þ, Mg2þ, Naþ, Kþ, Mn
and Si) by atomic absorption spectrometry. Heavy metals were
analyzed using a graphite furnace atomic absorption spectropho-
tometer. Total As content was determined by two methods using:
the Wagtech Arsenator� field kit (Garrido et al., 2009) and atomic
absorption spectrophotometry (Perkin Elmer Model 3100 equipped
with a hydride generator).

PHREEQC software (Parkhurst and Appelo, 1999) was used to
predict the redox state of As species (As III or As V). Calculations
were performed with water with a charge balance of <5%.

2.2. Preliminary appraisal of As health exposure

The population’s potential health risk due to exposure to As
was calculated. The route of exposure included ingestion and
skin contact; short and long periods of exposure were consid-
ered. This preliminary appraisal of arsenic exposure followed
USEPA guidelines (1991), which involved identification of
contaminant sources, magnitude of exposure, pathways of pop-
ulation exposure and characterization of risk. Information was
obtained from residents 2e78 years old with particular interest
in developing individuals; the questionnaire for children was
administered to their mothers. Foremost in the items of the
questionnaire were: water (bottled or well water) consumed by
children, mothers and other adults; type of water used to prepare
food; length of residence in the community; frequency of
gastrointestinal diseases and; the presence of skin diseases on
hands, face and feet.

2.3. Arsenic removal test

The Instituto Mexicano de Tecnología del Agua (Mexican
Institute for Water Technology, IMTA, Spanish acronym) has
developed an arsenic removal system (Fig. 2) which uses
adsorption/co-precipitationwith iron nails and a commercial fiber
(stainless steel material to remove kitchen grease and residue)
followed by sand filtration (sand diameter 0.28e0.45 mm and TE
of 1.2 mm).

The inner diameter of acrylic columns were 0.14 m (adsorption
column) and 0.09 m (filtration column). The heights of the beds
were 0.20 m for gravel and 0.22 m for sand-gravel. The filter area
measured 6.35$10�3 m2. The flow control valves and sampling
points were P1 - Water influent, P2 e Adsorbent media effluent, P3
e Gravel filter effluent, and P4 e Sand-gravel filter effluent (Fig. 2).
These two units were operated in the following conditions:

1) Adsorption column: filtration rate of 0.078 m h�1 and contact
time of 76 min.

2) Filtration column: filtration rate of 0.189 m h�1, capacity suffi-
cient to cover daily water consumption (28.8 L d�1) for drinking
and cooking.

The first configuration (Experiment 1) used a 2.2 kg iron nails
bed oxidized with HNO3 4.8 N solution. The second configuration
(Experiment 2) used a 181.3 g commercial fiber bed oxidized with
500 mL HNO3 4.8 N solution. Finally the third configuration
(Experiment 3) used a 181.3 g commercial fiber bed oxidized with
500 mL HCl 2N solution. The equations for hydrochloric and nitric
acid reactions with iron are:

2HCl þ Fe / FeCl2 þ H2

10HNO3 þ 4Fe / 4Fe(NO3)2 þ N2O þ 5H2O

The arsenic removal tests were performed with water from the
Pajaro Verde site, where As (III) was present in small quantities
(Garrido et al., 2009). Fortunately, all As (III) was oxidized in sodium
hypochlorite solution (1 mg L�1) into the more stable As (V) for
better treatment efficiencies. The ambient temperature during the
trials ranged from 19 to 21 �C throughout the test. The pH was kept
constant at a value of 8.6.

3. Results and discussion

3.1. Chemical composition of waters

The chemical composition of water samples is summarized in
Table 1. Groundwater had an electric conductivity of up to
192 mS cm�1, which corresponded to HCO3

� (338 mg L�1), Ca2þ

(65 mg L�1), Mg2þ (29 mg L�1) and Naþ (47 mg L�1) contents. The
Ca2þ and Mg2þ contents correlated well with the HCO3

� content
(r ¼ 0.916). Major element concentrations were plotted on a Piper
diagram and showed only small variations, especially in cation
concentrations. Groundwater was basically bicarbonate water, and
calcium and sodium were the prevailing cations (Fig. 3). According
to a preliminary hydrogeochemical groundwater model (Esteller
et al., 2010), groundwater composition was related to volcanic
rock. Rainwater infiltration and watererock interaction could
explain the presence of HCO3

- as a dominant anion and neutral pH
conditions (Appelo and Potsm, 2005). The dominance of bicar-
bonate may partly reflect calcite in veins.

Concentrations of As, Fe, Mn, Cd and Pb species were higher
than Mexican drinking water standards (NOM-127-SSA1-1994).

Fig. 2. Typical schematic configuration filters.
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Fig. 4 shows As concentrations in all samples exceeding the current
WHO guideline (0.010 mg L�1) as well as Mexican drinking water
standards (0.025 mg L�1). High contents of As, Cd and Pb species
dissolved in groundwater are commonly attributed to dissolution of
galena, sphalerite and pyrite (Smedley and Kinniburgh, 2002;
Seiler, 2004). These minerals have been identified in ore within
the study area (Schulze, 1959).

Most relevant to this study, bicarbonate and silicate have been
found to interfere with arsenic sorption onto iron oxides and hy-
droxides (McNeil et al., 2002; Smedley and Kinniburgh, 2002; Gao
et al., 2011). Thus, higher bicarbonate and silicate levels in

groundwater coupled with higher pH (Table 1) can increase dis-
solved As concentrations (Gao et al., 2011). This process could
explain the high groundwater As concentration values in the study
area.

According to As speciation performed with PHREEQC, As (V)
concentration (10�7e10�6 mol L�1) was greater than As (III)
(10�19e10�9 mol L�1).

3.2. Risk assessment

Ninety-three questionnaires were distributed to willing resi-
dents in the study area (92 valid replies and one no-reply); 57
participants were women and 35 men. The survey showed that all
residents of the Huautla community were exposed to the metalloid
through water used for food preparation. In addition, 43.0% of the
population had a high exposure to arsenic, as their only drinking
water supply was from the mine area. A smaller group, 11.8%, had
intermediate exposure since they consumed both water from the
mine area and bottled water. Finally, 45.2% ingested only bottled
water, suggesting a very low exposure.

Fig. 3. Piper diagram showing major ion composition of groundwater samples. The
groundwater was type CaeHCO3.

Fig. 4. Arsenic concentration in groundwater samples (1 Pajaro verde, 2 Presita, 3
Santiago, 4 Tlachichilpa). As concentrations were higher than Mexican drinking water
standards and WHO (2004) guideline limits.

Table 1
Results of the physicochemical analyses of groundwater samples (values in mg L�1, except EC (mS cm�1), Eh (mV), T (�C), pH; EC: electric conductivity, TDS: total dissolved
solids, Nd: not determined).

Mexican standards Pajaro Pajaro Pajaro Pajaro Presita Presita Santiago Santiago Santiago Tlachichi Tlachichi Tlachichi

Aug-06 Feb-07 Jul-07 May-06 Jul-07 May-07 Feb-07 Jul- 07 May-06 May-06 Jul-07 Feb-07

pH 6.5e8.5 Nd 7.63 7.67 7.33 7.19 7.2 7.46 7.35 7.16 Nd 7.52 7.4
Eh e Nd 146.3 Nd 256.4 Nd Nd 149.9 Nd 57.8 Nd Nd 187.3
Ta e Nd Nd Nd 26 Nd Nd 25.5 Nd 24 Nd Nd 21.9
EC e Nd 437 Nd 486 Nd Nd 514 Nd 558 Nd Nd 192
TDS e Nd 484 396 356 468 403 506 442 348 Nd 242 298
Naþ e 34.31 31.19 32.97 25.12 46.87 41.83 35.22 36.89 27.23 20.81 11.1 9.48
Kþ e 3.44 3.01 2.36 2.03 6.12 2.44 2.358 5.51 5.35 2.75 3.75 3.53
Mg2þ e 3.06 14.126 17.6 15.11 28.94 25.8 14.157 17.36 16.21 8.66 7.66 5.45
Ca2þ e 35.49 42.59 49.54 48.71 55.11 51.83 54.55 65.04 62.58 25.6 29.61 21.72
Cl- e 3.6 1.51 4.43 2.46 6.89 6.12 6.54 6.4 7.88 1.18 0.936 1.51
SO4

2- 400 8.43 9.98 11.5 5.65 5.1 Nd 39.6 43.6 43.3 5.65 7.91 7.19
NO3

- 40 11.07 Nd 6.29 17.05 3.96 6.51 0.9 0.91 0.9 7.3 3.89 5.36
HCO3

- 250 221 228 248 289 338 319 251 265 315 132 119 114.8
Si e Nd 22.36 14.31 14.46 15.68 20.87 13.405 9.33 7.73 Nd 9.43 16.24
As 0.025 0.098 0.122 0.1334 0.083 0.0417 0.0501 0.0877 0.1102 0.049 0.261 0.2324 0.2614
Mn 0.15 Nd 0.05 0.05 0.05 0.05 0.05 1.56 Nd 1.64 0.05 0.05 0.05
Fe 0.30 Nd 0.083 0.05 0.05 0.05 0.05 0.232 0.8 0.13 0.05 0.118 0.536
F- 1.50 0.32 0.307 0.507 0.3 0.45 1.45 0.412 0.623 0.439 0.52 0.514 0.334
Cd 0.005 Nd 0.0016 0.001 0.001 Nd 0.001 0.0019 0.0109 0.0017 0.0066 0.001 0.001
Pb 0.01 Nd 0.005 0.005 0.01 0.005 0.0168 0.1193 1.3390 0.046 0.2669 0.005 0.005

M. Avilés et al. / Journal of Environmental Management 131 (2013) 103e109106



Author's personal copy

3.3. Tests of arsenic removal

A preliminary test lasting 24 days (624 h) was carried out using
the three filter configurations. Table 2 shows the average water
input and output parameters (with three replicates of each exper-
iment) for this test. The overall efficiency of Experiment 1 using
iron nails with HNO3 4.8 N solution was 91.73%, corresponding to
0.045 mg As L�1, which exceeds the Mexican drinking water stan-
dard (0.025 mg L�1). The best results were obtained with Experi-
ment 3, yielding arsenic concentrations below the Mexican
standard of 0.025 mg L�1 and a maximum arsenic elimination ef-
ficiency of 95.45%. Experiment 2 showed poorer efficiency as
compared to Experiment 3, the former having a value of 72.73% and
an arsenic concentration in the effluent of 0.03 mg L�1.

Based on these results, we conducted a long duration test of
105 days (2520 h) using the filter configuration from Experiments
2 and 3.

Figs. 5 and 6 show the behavior of input and output arsenic
concentrations for each water sampling point (P1, P2, P3, P4) ac-
cording to the configuration of filters in Experiments 2 and 3.
Arsenic removal for 105 days using commercial fiber treated with
HNO3 4.8 N solution (Experiment 2) was 238.90 mg As d�1, corre-
sponding to 1327.71 mg As kg�1. Arsenic removal with commercial
fiber oxidized with HCl 2 N solution (Experiment 3) was
314.50 mg As d�1, equivalent to 1734.67 mg As kg�1.

The average values and the standard deviation of arsenic
concentration (with three replicates of each experiment for
each sampling point) for Experiment 2 with HNO3 4.8 N solu-
tion and Experiment 3 with HCl 2 N solution are shown in
Figs. 7 and 8, respectively. Fig. 9 shows the removal efficiency of
the tests.

The overall removal efficiency for Experiment 2 was 72.48%
(Fig. 9). The removal percentage for point P1eP2 was 28.44%
(Fig. 9), corresponding to 0.078 mg As L�1 (Fig. 7). The same per-
centage of 28.44% was obtained for point P2eP3, with a decrease in
the concentration to 0.0047 mg L�1. And the efficiency for P3eP4
was 15.6% with a final arsenic concentration of 0.030 mg As L�1,
slightly higher than the value allowed by Mexican drinking water
standards (0.025 mg L�1). This may be due to fewer active sites for
adsorption, which requires more contact time (Debnath et al.,
2003).

The overall removal percentage for Experiment 3 was 95.41%
(Fig. 9). For P1eP2, the removal efficiency was 75.23% (Fig. 9),
equivalent to 0.027 mg As L�1 (Fig. 7), slightly higher than the
Mexican drinking water standard. Efficiency for P2eP3 was 5.5%
removal for an As concentration of 0.021 mg L�1, which meets
drinking water standards. And for P3eP4, the removal efficiency
was 14.68% with an As residual concentration of 0.005 mg As L�1,
which is below the allowable value established by Mexican drink-
ing water standards.

The adsorption capacity in Experiment 3 was 0.326 mg As g�1

with a commercial fiber oxidized with HCl 2 N solution, which is
high compared to the 0.024 mg As g�1 with iron-coated sand re-
ported by Vaishya and Agarwal (1993) and the values of 0.043 and
0.008 mg As g�1 obtained with iron-oxide-coated sand by
Thirunavukkarasu et al. (2001) and Thirunavukkarasu et al. (2003),
respectively.

As (V) removal by iron is based on a reduction process given by
the following equations (at pH ¼ 8.5) (Melitas et al., 2002):

HAsO2�
4 þ 3Hþ þ 2 e�5AsO�

2 þ 2H2O

FeHAsO2�
4 þ 3Hþ þ 2 e�5FeAsO�

2 þ 2H2O

The formation of a film adhesion to metal was observed during
contact time. Although chemical stoichiometry studies were not
conducted of the material that formed, this material could be
FeAsO4$2H2O (iron arsenate) considering the conditions under
which the experiment was performed and the color of the

Fig. 5. Arsenic concentration in the effluent of Experiment 2 using a commercial fiber
bed oxidized with HNO3 4.8 N over a 105-day operation. Asinitial: 0.11 mg L�1.

Fig. 6. Arsenic concentration in the effluent of Experiment 3 using a commercial fiber
bed oxidized with HCl 2 N over a 105-day operation. Asinitial: 0.11 mg L�1.

Table 2
Average characteristics of the raw and treated effluent water and overall efficiency of
the experiments (Period ¼ 26 days).

Parameters Raw water Iron nails Commercial fiber Mexican
standards

(HNO3 4.8N) (HNO3 4.8N) (HCl 2N)

Exp. 1 Exp. 2 Exp. 3

EC (ms cm�1) 447 424 466 450 e

pH 7.6 8.55 8.60 8.6 6.5-8.5
Arsenic (mg L�1) 0.11 0.045 0.03 0.005 0.025
Turbidity (NTU) 5.06 9 1.50 0.79 5
Color (UPteCo) 7.0 20 13 6.21 20
Fe (mg L�1) 0.035 0.57 0.16 0.05 0.30
Arsenic removal (%) 59.00 72.73 95.45
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precipitate. Based on the Eh-pH diagram of the AseH2O and Fee
H2O systems, the predominant species were Fe(OH)3 and
H2AsO4

�.

FeAsO4$2H2OþH2O5H2AsO
�
4 þ FeðOHÞ3 þHþ

Table 3 presents the characteristics of raw and treated water
from Experiment 3, observing that all parameters met Mexican
drinking water standards.

4. Conclusions

Preliminary results from the Huautla Mining District showed
that groundwater pooled in the workings was contaminated by
arsenic and other toxic metals. As, Fe, Mn, Pb and Cd concentrations
were higher thanWHO andMexican drinking water standards. The

high dissolved arsenic concentration and the presence of silica and
bicarbonate suggest competition for adsorption sites. This
geochemical process could be responsible for arsenic enrichment in
the groundwater.

In relation to the arsenic-exposed population, about half the
surveyed sample in Huautla was exposed to significant amounts of
arsenic in drinking water. Moreover, the entire population was
exposed to the metalloid through water used for food preparation.

Tests of a small household filter demonstrated that it could be a
viable low-cost solution considering the prevailing conditions in

Fig. 7. Arsenic concentration in each sample point for Experiment 2 using a com-
mercial fiber bed oxidized with HNO3 4.8 N.

Fig. 8. Arsenic concentration in each sample point for Experiment 3 using a com-
mercial fiber bed oxidized with HCl 2 N.

Fig. 9. Removal efficiencies of As for Experiment 2 (oxidized with HNO3) and 3
(oxidized with HCl).

Table 3
Average characteristics of the raw and treated effluent water for Experiment 3
(Period ¼ 105 days).

Parameter Mexican
standards

Influent P1
(raw water)

Effluent P4
(HCl 2N)

Color U PteCo 20 7.00 6.21
Turbidity NTU 5.00 5.06 0.79
pH 6.5-8.5 7.67 8.60
Total

Suspended
Solids

mg L�1 e 15.0 13.0

Total
Dissolved
Solids

mg L�1 1000 396 254

HCO3
- mg L�1 e 248 241

Hardness mg L�1 500 197 169
NeNO2

- mg L�1 0.5 <0.12 <0.12
NeNO3

- mg L�1 10 1.42 1.35
SO4

2- mg L�1 400 11.5 10.67
F- mg L�1 1.5 0.51 0.48
PO4

3- mg L�1 e <1.04 <1.04
Cl- mg L�1 250 4.43 4.28
As total mg L�1 0.025 0.110 0.005
Cd mg L�1 0.005 <0.001 <0.02
Ca mg L�1 e 49.54 29.38
Al mg L�1 0.20 <0.005 <0.005
Fe mg L�1 0.30 <0.05 0.14
Cu mg L�1 2.0 <0.05 <0.05
Cr mg L�1 0.06 <0.05 <0.05
Mg mg L�1 e 17.36 16.97
Mn mg L�1 0.15 <0.05 <0.05
Pb mg L�1 0.01 <0.005 <0.005
K mg L�1 e 2.36 2.15
Si mg L�1 e 14.31 13.98
Ni mg L�1 e <0.05 <0.05
Zn mg L�1 5.0 <0.10 <0.10
Na mg L�1 200 32.97 31.93
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rural areas, where centralized water supply systems are absent. A
household filter with appropriate commercial fiber had great po-
tential for producing water with low dissolved arsenic contents
(average output <0.015 mg L�1 versus 0.11 mg L�1 groundwater
arsenic concentrations). This technology is expected to continue to
improve, as it is adapted to rural environments.
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