

sobre estimación de la vida útil en proyectos arquitectónicos

Silverio Hernández Moreno

Arquitecto por la Universidad Michoacana, maestro y doctor en Arquitectura por la UNAM; trabaja en la Facultad de Arquitectura y Diseño de la Universidad Autónoma del Estado de México (UAEM). Trabaja sobre las líneas de investigación: Tecnología y Medio ambiente en Arquitectura. Es Profesor-Investigador de Tiempo Completo y miembro vigente del Sistema Nacional de Investigadores, nivel 2.

Casos prácticos sobre estimación de la vida útil en proyectos arquitectónicos

Dr. en Ed. Alfredo Barrera Baca ${\it Rector}$

Dr. en C. I. Amb. Carlos Eduardo Barrera Díaz Secretario de Investigación y Estudios Avanzados

Mtra. en Admón. Susana García Hernández Directora de Difusión y Promoción de la Investigación y los Estudios Avanzados

> L.L.L. Patricia Vega Villavicencio Jefa del Departamento de Producción y Difusión Editorial

Casos prácticos sobre estimación de la vida útil en proyectos arquitectónicos

Silverio Hernández Moreno

Casos prácticos sobre estimación de la vida útil en proyectos arquitectónicos

Primera edición: agosto 2017

ISBN UAEM: 978-607-422-855-7 ISBN EÓN: 978-607-9426-97-2

© Universidad Autónoma del Estado de México Instituto Literario núm. 100 ote. C.P. 50000, Toluca, México http://www.uaemex.mx

> © Ediciones y Gráficos Eón, S.A. de C.V. Av. México-Coyoacán, núm. 421 Colonia Xoco, Delegación Benito Juárez México, D.F., C.P. 03330 Tels.: 56 04 12 04 y 56 88 91 12 administracion@edicioneseon.com.mx www.edicioneseon.com.mx

La presente investigación fue sometida a dictamen en el sistema de pares ciegos externos.

El contenido de este libro es responsabilidad de los autores.

En cumplimiento a la normatividad sobre el acceso abierto de la investigación científica, esta obra se pone a disposición del público en su versión electrónica en el repositorio de la UAEM (http://ri.uaemex.mx) para su uso en línea con fines académicos y no de lucro, por lo que se prohíbe la reproducción parcial o total, directa o indirecta del contenido de esta presentación impresa sin contar previamente con la autorización expresa y por escrito de los editores, en términos de lo así previsto por la Ley Federal del Derecho de Autor y, en su caso, por los tratados internacionales aplicables.

Impreso y hecho en México / Printed and made in Mexico

Índice

Introducción9
Capítulo 1. Introducción a la estimación de la vida útil y durabilidad en proyectos de arquitectura y edificación
Capítulo 2. Método particular para análisis comparativo de diseño por durabilidad y vida útil en proyectos de arquitectura y edificación
Capítulo 3. Introducción a la estimación de la vida útil y durabilidad de una tenso-estructura a través del método por factores de ISO 15686 57
Capítulo 4. Introducción a la estimación de vida útil y plan de durabilidad para el ejemplo de una casa habitación
Conclusiones
Referencias
Anexo 1
Anexo 2

Introducción

L presente libro es el producto de una investigación individual en el Centro de Investigación en Arquitectura y Diseño de la Facultad de Arquitectura y Diseño de la Universidad Autónoma del Estado de México. La obra forma parte de otros productos de investigación como libros, capítulos de libros, patentes, reseñas, artículos científicos y de divulgación que se han publicado durante tres años como resultados de la investigación del proyecto en Ciencia Básica: Planeación de la vida útil en proyectos de arquitectura y edificios sustentables en México apoyado por el Conacyt, el cual acaba de concluir.

Actualmente hay una mayor exigencia en materia de sustentabilidad en los despachos de arquitectura para la elaboración de proyectos de edificios, uno de los rubros de diseño sustentable en edificación es el aspecto de durabilidad, por lo que el presente documento aborda la planeación de la vida útil y la durabilidad en proyectos arquitectónicos a través de las fases de diseño del proyecto basándose en teoría y casos prácticos para estimar la vida útil que cada proyecto pueda tener. Estos son datos muy importantes para diseñar y construir cualquier proyecto arquitectónico, especialmente para planear la durabilidad y el mantenimiento del mismo.

Los principales rubros de diseño sustentable son:

- El diseño sustentable del sitio del proyecto.
- El diseño sustentable de la energía (de forma pasiva y activa).
- El diseño sustentable del agua en el edificio.
- El diseño sustentable de los materiales y los desechos de construcción.
- El diseño sustentable del confort y calidad al interior del inmueble.
- La estimación de la vida útil y durabilidad del inmueble.

De estos seis rubros de diseño sustentable en edificación según LEED® CANADA (Green Building Council, 2004) la estimación de la vida útil y durabilidad del inmueble se debe hacer al principio del proyecto; es decir, en las fases de planeación, prediseño y diseño del inmueble para prever las condiciones técnicas y de rendimiento de los principales componentes constructivos para que alcancen los rendimientos deseados en un determinado periodo de tiempo del proyecto, referido a su vida útil.

El problema en México y en varios países del mundo es que en los despachos de arquitectura y construcción no se implementa ninguna metodología para el diseño por durabilidad del edificio. Muchas veces se ha dado por hecho que el edificio durará siempre o durante una gran cantidad de años, sin planear la vida útil ni la durabilidad, que además acarrea problemas en la parte del mantenimiento, uso y operabilidad del edificio, ocasionando gastos extras en mantenimiento e impactos ambientales mayores (Grant y Ries, 2012).

El objetivo principal del libro es presentar al lector que los modelos más usados en la edificación sustentable, como son LEED® y BREEAM®, incluyen un rubro de durabilidad en donde se solicitan, durante el diseño del proyecto, las

principales consideraciones y estrategias para que el edificio alcance una durabilidad adecuada en relación con varios factores: climáticos, calidad de los materiales, calidad de la mano de obra, diseño arquitectónico-constructivo, uso y el mantenimiento del edificio. Como objetivos particulares, se aborda lo siguiente:

- Describir la definición y concepto de durabilidad en los edificios a través de la integración de la planeación de la vida útil durante el proceso de diseño arquitectónico sustentable.
- Describir y explicar cada factor o variable que interviene en la estimación de la vida útil en proyectos arquitectónicos.
- Proponer y ejemplificar un método para estimar la vida útil de los edificios en México, a través de adoptar, mejorar y adaptar el método por factores de ISO 15686.
- Implementar el método propuesto en varios ejemplos para el caso de la arquitectura y construcción en México (los casos de la vivienda y/o casa habitación y de cubiertas ligeras).

Capítulo 1 Introducción a la estimación de la vida útil y durabilidad en proyectos de arquitectura y edificación

Lable, como LEED® o BREEAM®, están siendo regularmente usados para valorar la sustentabilidad de un proyecto, no solamente para certificarlos sino para asegurar, a través de este tipo de modelos y/o métodos de edificación ambiental, que el diseño y construcción del inmueble evite, reduzca y mitigue los diversos impactos ambientales que pueden ocasionar durante su vida útil o vida de servicio. Entre los rubros a considerar dentro de un diseño sustentable (independientemente de los rubros del manejo sustentable del sitio, agua, energía, materiales, desechos y confort al interior, lo cual se puede ver en el Anexo 2 del presente libro), está la planeación de su vida útil y su diseño por durabilidad, por lo que el presente libro contiene tres casos prácticos divididos en capítulos.

El segundo capítulo trata sobre un método particular para el análisis comparativo de diseño por durabilidad y vida útil en proyectos de arquitectura y edificación, es un método propuesto por el autor que se deriva del mejoramiento del

método por factores de ISO 15686. La propuesta busca estimar más detalladamente un proyecto, considerando sus aspectos de durabilidad en cada factor o variable que determina la vida útil y durabilidad del mismo. El mejoramiento, en relación con el de ISO 15686, consiste básicamente en ser un método que toma en consideración la opinión del arquitecto y no solamente dependiente de la experiencia del constructor de corte ingenieril, quien organiza la información de tal forma que se puede estimar una vida útil con base en variables limitadas solamente a componentes constructivos y pondera cada variable de la misma manera y con el mismo peso jerárquico, haciéndolo un método subjetivo e inexacto y dejando fuera valores cuantitativos; el método propuesto incluve la ponderación y valoración de los datos cuantitativos, además de los cualitativos, por factores va conocidos.

El tercer capítulo trata sobre la estimación de la vida útil y durabilidad de una tenso-estructura a través de la implementación del método por factores de ISO 15686, lo cual es la referencia principal de la presente investigación, y es un ejemplo muy práctico que se puede utilizar para la estimación rápida y aproximada de un proyecto de construcción y/ o sus partes o componentes. El cuarto capítulo trata sobre la estimación de la vida útil y el plan de durabilidad para el ejemplo de una casa-habitación, el proyecto más común en el "quehacer" arquitectónico, tanto en México como a nivel mundial.

Cuando se habla de durabilidad y vida útil en los edificios, se suele creer que el edificio perdurará por siempre o de forma indefinida; peor aún, muchos profesionistas de la arquitectura y de la edificación creen que la durabilidad y la vida útil son conceptos iguales; sin embargo, la vida útil de un edificio se refiere al periodo de tiempo después de la construcción o instalación durante el cual un edificio o sus

partes cumplen o exceden los requisitos de rendimiento para lo cual fueron diseñados y construidos, por lo que se debe hacer uso de mantenimiento correctivo y de reparaciones en sus componentes (ISO, 2000).

La durabilidad de una construcción, por su parte, es la capacidad o cualidad que un edificio o componente constructivo tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado sitio o ambiente, bajo un determinado tiempo, sin hacer uso de mantenimiento correctivo o de reparaciones (Canadian Standards Association, 2001). El rendimiento se puede definir cuando un producto, material o componente constructivo cumple con los requerimientos técnicos estructurales, funcionales y arquitectónicos para lo cual fue seleccionado o diseñado, siendo dirigido a determinado proyecto y para determinada vida útil de diseño.

Es muy conveniente diferenciar también los conceptos sobre vida útil de diseño (VUD) y vida útil estimada (VUE). La primera otorga un punto de partida o de referencia para poder estimar la segunda. La VUD se puede obtener de la experiencia del proyectista o de datos estadísticos registrados como historiales de proyectos similares, etcétera, por eso la VUE se puede estimar y calcular partiendo de la VUD y de los factores que intervienen en el proyecto. Dichos factores son básicamente siete y se explican a continuación.

1. Calidad de los materiales y componentes de construcción

La calidad de un material está determinada por sus componentes en sus materias primas (aspectos físicos y químicos), pero también por la manera en que fue producido, es decir, por sus características de manufactura, transporte y almacenaje. Su control de calidad dependerá desde la extracción de la materia prima, su selección y evaluación de dicha materia prima hasta su manufactura, transporte, almacenaje y aplicación en la obra.

Figura 1
Calidad de los materiales y componentes
en la construcción

Fuente: Foto tomada por Silverio Hernández Moreno, 2009.

2. El nivel o grado del diseño arquitectónico, constructivo y de sus instalaciones

Diseño del edificio completo y sus componentes o partes, tales como: la estructura, el envolvente, las instalaciones y los acabados con apego a las normas de construcción, pero también de acuerdo con la premisa de que los elementos de construcción y arquitectónicos deben quedar lo más protegidos posible ante agentes de degradación.

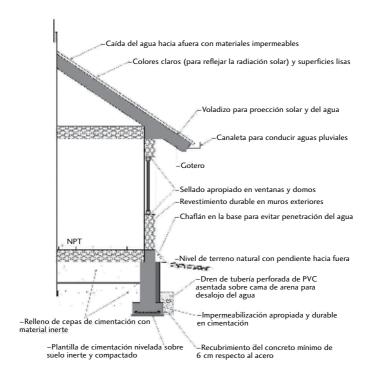
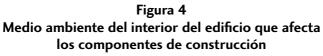


Figura 2
Calidad en el diseño arquitectónico por durabilidad

Fuente: Diseño y dibujo hechos por Silverio Hernández Moreno, 2014.


3. La calidad y nivel de la mano de obra en la ejecución de los procesos de construcción

El nivel de la mano de obra en la ejecución de los trabajos se mide de acuerdo con la preparación técnica del constructor o instalador y con su experiencia en el tipo de proyectos que está ejecutando.

Figura 3
Calidad de la mano de obra en la construcción

Fuente: Foto tomada por Silverio Hernández Moreno, 2009.

Fuente: Foto tomada por Silverio Hernández Moreno, 2009.

4. El medio ambiente del interior del edificio

Agentes agresivos del medio ambiente interno: humedad y temperatura. Agentes químicos y físicos existentes al interior del inmueble: elementos construidos, ventilación, corrosión y condensación interna.

5. El medio ambiente externo al edificio

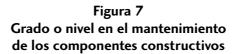
Localización y ubicación del edificio, clima exterior (humedad y temperatura), lluvia ácida, emisiones de vehículos e industrias aledañas.

Figura 5
Clima del exterior que afecta al edificio y sus componentes constructivos

Fuente: Foto tomada por Silverio Hernández Moreno, 2009.

6. Condiciones del uso en el edificio

Actividades y condiciones de uso, la operación específica del inmueble por el usuario y operario, así como equipos electromecánicos e instalaciones especiales, por ejemplo: aire acondicionado, calefacción, iluminación, equipos de seguridad, etcétera.


Figura 6
Uso que tiene el inmueble durante su vida útil
o vida de servicio

Fuente: Foto tomada por Silverio Hernández Moreno, 2009.

7. Grado o nivel de mantenimiento

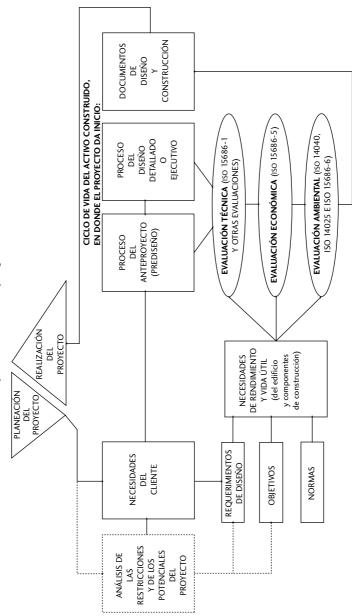
Calidad y frecuencia en el mantenimiento, además del tipo o grado de accesibilidad al mantenimiento de los componentes constructivos.

Fuente: Foto por Silverio Hernández Moreno, 2009.

Todos los factores mencionados inciden directa e indirectamente sobre todo proyecto durante su edificación y hasta el momento posterior a su construcción, por lo que se deben valorar y tomar en consideración para el diseño y levantamiento del proyecto. Estos factores se alinean con la norma técnica de ISO 15686, la cual es un método simple, pero muy práctico, para estimar la vida útil de un proyecto en las primeras fases de su diseño; cabe señalar que es un método aproximativo y un tanto subjetivo porque requiere de mucha experiencia del proyectista, pero es de suma utilidad para estimar rápidamente la vida útil que tendrá un proyecto, siendo de gran importancia en la toma de decisiones, incluso desde la fase de planeación.

Figura 8 Estimación de vida útil mayor a la de diseño para toma de decisiones en el proyecto de edificaciones

Requerimientos del cliente (prediseño)				
∇				
Previsión de la vida útil (inicio del diseño)				
∇				
Etapa de diseño				
∇				
¿Vida útil > vida de diseño?NO				
▽ SÍ				
Costos de ciclo de vida aceptables				
▽ SÍ				


Preparación de documentos (especificaciones de construcción y mantenimiento)

Fuente: ISO, 2000.

La Figura 8 muestra un esquema en el que se señala la condición adecuada para continuar de la fase de diseño a la de construcción, ahí se especifica que la vida útil estimada de un proyecto debe ser mayor o igual a la vida útil de diseño para poder pasar a la ejecución de la obra.

La Figura 9 muestra un esquema para la evaluación de la norma técnica ISO 15686, desde la fase de planeación del proyecto hasta su ejecución y realización física, donde se consideran las necesidades de rendimiento de cada componente y su vida útil de diseño para poder proponer una evaluación técnica de tres tipos: su costo, los aspectos de durabilidad y vida útil del proyecto, así como los impactos ambientales que éste generará desde el punto de vista de la norma ISO 15686-6.

Evaluación de ISO 15686 desde la planeación del proyecto hasta la construcción del mismo Figura 9

Fuente: 150, 2000.

Capítulo 2 Método particular para análisis comparativo de diseño por durabilidad y vida útil en proyectos de arquitectura y edificación

L para el análisis comparativo de diseño por durabilidad y vida útil en proyectos de arquitectura y edificación. Es una propuesta que se deriva del mejoramiento del método por factores de ISO 15686, pretende estimar más detalladamente un proyecto y considerar sus aspectos en cada factor o variable que determina la vida útil y durabilidad del mismo.

Antecedentes

Durante el proceso de diseño arquitectónico, se requiere una valuación en años que determine una vida útil del inmueble para partir de un punto de referencia con el fin de poder estimar y realizar predicciones acerca de la vida útil, entendida como el periodo de tiempo después de la instalación o construcción en el que un edificio o sus partes cumplen o exceden los requisitos de rendimiento para lo cual fueron diseñados y construidos. Se debe hacer uso del mantenimiento correctivo significativo, de reparaciones de materiales y componentes constructivos, eso tiene un impacto económico y funcional distinto a lo planeado originalmente (ISO, 2000).

Estimar la vida útil que se espera del edificio es muy conveniente para poder tomar decisiones en todo el ciclo de vida del proyecto desde su planeación, pasando por el prediseño, diseño y construcción, hasta el uso, operación, mantenimiento y fin de la vida útil del edificio o, en determinados casos, de componentes constructivos. Esto pretende alcanzar los parámetros y requisitos del proyecto, principalmente durante su fase de uso, operación y mantenimiento a partir de un adecuado diseño por durabilidad que no solamente involucra proteger los elementos más vulnerables a deterioro, sino también proveer ahorros en el mantenimiento preventivo y correctivo del edificio que, de forma integral, también puede reducir de manera significativa los impactos ambientales causados por la edificación.

El concepto de durabilidad se entiende como la capacidad que un edificio o componente de un edificio tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado ambiente o sitio, bajo un determinado tiempo sin realizar trabajos de mantenimiento correctivo ni reparaciones significativas (Canadian Standards Association, 2001). A partir de riesgos de carácter mecánico, físico, químico y geométrico se presenta cierto grado de vulnerabilidad en el edificio que pueda afectar su durabilidad y vida útil (Monjo, 2007). El problema, en muchos despachos de arquitectura, es que tanto el proyectista como el encargado del proyecto a veces no consideran la vida útil ni el diseño por durabilidad en ninguna de las fases del ciclo de vida del inmueble, particularmente en la planeación y diseño, por lo que siempre les acarrea problemas como la reducción de la vida útil, el aumento del costo en el mantenimiento y en remplazos de componentes constructivos; peor aún, propicia daños a la estructura, al confort y al funcionamiento total del edificio y sus partes, además provoca mayores impactos al ambiente y a la salud pública a lo largo de su vida útil.

Se sabe que existen muchas variables que pueden afectar la durabilidad y vida útil de un edificio, por lo que deben ser ordenadas de tal forma que incluyan todos los posibles factores que deterioran los componentes de los edificios; para cumplir con dicho fin, se propone un método particular que logre estimar, de manera confiable, la vida útil y durabilidad de los edificios. La opinión y experiencia de especialistas del ramo de la edificación y arquitectura también se ha tomado en cuenta: arquitectos, constructores, fabricantes de materiales y promotores inmobiliarios (véase Tabla 1 en la sección de resultados).

Respecto al valor de incidencia de los factores que afectan la vida útil y la durabilidad de las edificaciones, se establece con el fin de unificar criterios, contando con una jerarquización de estas variables para realizar una mejor ponderación previa a la aplicación del método propuesto que se detallará más adelante, en la sección de metodología.

La vida útil de diseño, entendida como el valor de la vida útil de partida para comenzar el diseño, es una referencia tomada de la experiencia del diseñador o de especificaciones técnicas del fabricante en el caso de componentes constructivos (que también podrían ser pruebas de envejecimiento acelerado en laboratorio). También se considera la vida útil calculada a través de un método específico que, se espera, tenga el proyecto durante su fase de uso, operación y mantenimiento debido a ciertas condiciones y factores concernientes al inmueble.

Para estimar y calcular la vida útil de los edificios, existen varios métodos y modelos, tanto estadísticos como predictivos (Sjöström y Jernberg, 2001). El método de registro histórico es uno de ellos, sólo debe ser usado para edificios y componentes constructivos muy similares que hayan sido utilizados con éxito bajo las mismas condiciones técnicas y ambientales; también depende de la experiencia

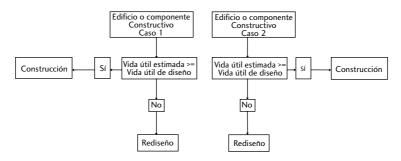
del diseñador, proyectista o constructor. Este método debe proveer, al proceso de diseño, soluciones descriptivas básicas: cubiertas protectoras a la humedad y al sol, dimensiones de algunos elementos constructivos o arquitectónicos, detalles específicos de diseño y requerimientos directos del mantenimiento.

El método por factores de ISO 15686 también depende de la experiencia del constructor de corte ingenieril, quien organiza la información de tal forma que se puede estimar una vida útil con base en variables solamente limitadas a componentes constructivos, ponderando cada variable de la misma manera y con el mismo peso jerárquico; eso lo hace un método subjetivo e inexacto por descartar valores cuantitativos. Existe otro método derivado del ISO 15686 que solamente se centra en estimar la vida útil de edificaciones históricas (Macías-Bernal et al., 2014), o sea, edificios ya existentes en donde solamente se ponderan los aspectos de la situación física de los inmuebles, sin abordar una metodología para la estimación de nuevos proyectos.

Madrigal (2012) propone un método basado en la metodología de ISO 15686 que repite exactamente lo mismo, pero enfocado solamente a fachadas y cubiertas. Ferreira (2009) y Ortega se basan en el mismo método por factores de ISO 15686, pero enfocan el estudio hacia revestimientos de piedra natural en paredes.

Existen métodos predictivos como el de simulación y de modelado matemático, que suelen ser usados cuando se trata de componentes nuevos o en componentes constructivos ya probados, pero en ambientes ligeramente diferentes a los acostumbrados. El modelado debe ser llevado a cabo solamente por expertos en la disciplina matemática porque son métodos predictivos y numéricos especializados.

Los métodos que se basan en pruebas físicas de envejecimiento acelerado se aplican a cualquier elemento o componente constructivo a través de pruebas de laboratorio sobre envejecimiento inducido, debe estar basado en normas internacionales aprobadas y tanto las pruebas como las evaluaciones deben ser realizadas por expertos en la disciplina de ciencia de materiales. El método por pruebas físicas en laboratorio se justifica cuando son nuevos materiales nunca antes aplicados o aplicados por primera vez en un nuevo medio ambiente, pero se limitan solamente a componentes constructivos, dejando fuera la estimación de vida útil de edificios completos.


Todos los métodos mencionados son de gran utilidad para estimar la vida útil de componentes constructivos, pero se observa que los primeros (modelos estadísticos) presentan cierto grado de incertidumbre al depender, en su mayoría, de información muchas veces desactualizada o de datos de referencia, de fabricantes, de materiales y componentes constructivos que no siempre brindan información confiable y, como ya se mencionó, sólo se limitan a componentes constructivos. El segundo grupo (modelos predictivos) requiere de información obtenida en pruebas de laboratorio o de información proveniente de modelos matemáticos que no siempre están al alcance de todos los despachos de arquitectura; además, su adquisición lleva mucho más tiempo y se limita a pocos componentes constructivos, por lo que ese tiempo usado puede ser crucial en determinadas situaciones durante el desarrollo de proyectos.

El presente trabajo considera que los métodos anteriores pueden ser mejorados a través de una propuesta con enfoque del arquitecto, usando información cuantitativa y cualitativa para la misma determinación de la vida útil y durabilidad de los proyectos. Por tal motivo, se propone una nueva metodología de cálculo que se aproxime lo más posible a una vida útil de diseño, desde el punto de vista de los requerimientos arquitectónicos.

La Figura 10 muestra la condición necesaria cuando debe presentarse una vida útil estimada al pretender que un proyecto pueda pasar a la fase de construcción, es decir, que la vida útil estimada sea mayor o igual a la vida útil de diseño; en caso contrario, el proyecto deberá regresar a la fase de diseño y rediseñarse, de tal forma que en el proceso de rediseño se utilice un diseño por durabilidad más estricto (estos criterios de diseño por durabilidad se resumen en la Tabla 1 de la sección de resultados, particularmente en la columna 3, referente a observaciones y aspectos de durabilidad) y pueden ser usados dependiendo de los puntos más vulnerables de deterioro identificados en cualquier proyecto o edificio.

La Figura 10 también puede ser de utilidad al realizar una comparativa entre dos o más proyectos, como el caso de ejemplo de aplicación de la presente propuesta metodológica.

Figura 10
Vida útil estimada a partir de una vida útil de diseño entre dos o más casos para ayuda en la toma de decisiones durante el proceso de diseño arquitectónico

Fuente: Elaboración propia.

Debido a lo mencionado anteriormente, los arquitectos carecemos de un método particular para calcular la vida útil en proyectos de arquitectura durante fases tempranas de diseño que nos permitan no solamente estimar o calcular la vida útil del proyecto, sino también tomar decisiones durante la fase de diseño. Es importante realizar propuestas de calidad en el diseño arquitectónico durable del edificio para evitar daños al inmueble y sus componentes externos: agua, humedad, infiltración de aire, condensación, evaporación, radiación ultravioleta, corrosión, plagas, desastres naturales, agentes químicos externos, calidad de mano de obra, calidad de materiales, tipo de mantenimiento, uso en el edificio, etcétera.

Metodología

El presente trabajo propone un método por factores, similar al de ISO 15686, pero mejorado en varios aspectos técnicos, sobre todo por el enfoque. El objetivo es proporcionar a los arquitectos una herramienta para estimar la vida útil, proponer estrategias de diseño arquitectónico por durabilidad que sean de utilidad y ayuden a la toma de decisiones sobre aspectos clave de durabilidad y mantenimiento de proyectos de edificios. Como se comenta en la parte introductoria de este trabajo, el método ISO 15686 depende de la experiencia del constructor con un enfoque ingenieril, aunque no es totalmente obsoleto; en proyectos de arquitectura se requiere experiencia de un proyectista o arquitecto por lo que el método de la propuesta logra reunir y unificar la experiencia del arquitecto y su enfoque en el diseño por durabilidad.

Otra cuestión mejorada en el método propuesto, respecto al de ISO 15686, es que no se limita sólo a la estimación de componentes de construcción, sino que se extiende a la valoración de vida útil de diseño de edificios completos y al mejoramiento del diseño durable del proyecto desde el punto de vista del arquitecto, lo cual lo hace más versátil y más confiable para la toma de decisiones en despachos de arquitectura. También se ha observado que el método de ISO y otros similares ponderan los factores de la misma manera para todos los proyectos, y se considera que se debe corregir ponderando los factores de manera jerárquica y por importancia en la asignación del valor de cada factor o variable de durabilidad, dependiendo el tipo de proyecto y asignando un índice de confiabilidad de 95% para valores cualitativos (los cuales son subjetivos), de 98% para valores mixtos (cualitativos y cuantitativos) y de 100% para valores cuantitativos (valores objetivos y perfectamente medibles).

A partir del objetivo de la presente investigación, que consiste en hacer un análisis comparativo entre dos proyectos similares (viviendas) a través de un método propuesto con enfoque del arquitecto para estimar la vida útil y la durabilidad de proyectos de arquitectura, se podrá conocer qué proyecto (vivienda) es más fiable bajo determinadas condiciones, así como saber en cuáles factores específicos se debe poner mayor atención durante el diseño por durabilidad y, en dado caso, en el rediseño del proyecto si es que así lo requiere.

El primer paso es definir el *objeto de estudio* que se refiere a dos tipos de vivienda enfocadas a usuarios similares (vivienda de economía media), localizadas en el mismo sitio, con la misma superficie de terreno y niveles de construcción, construidas por empresas similares, con una partida arquitectónica similar, pero con materiales y sistemas constructivos distintos. Las condiciones del análisis comparativo

se definen a partir de dos escenarios distintos: vivienda 1 (v1) y vivienda 2 (v2).

Este punto, estrechamente relacionado con el objeto de estudio, describe las principales especificaciones técnicas de las viviendas: sistemas constructivos, materiales, tipo de mantenimiento, calidad de mano de obra y diseño arquitectónico. Dichas características nos ayudarán a tomar decisiones al momento de hacer la valoración de los factores que se aplican al método propuesto para estimar la vida útil y sus puntos clave de durabilidad.

El segundo paso es definir las variables que intervienen en la estimación de la vida útil de cualquier edificio. Por un lado, tenemos la variable de respuesta, es la vida útil que se quiere estimar para cada vivienda; por otro, tenemos las variables de control, los factores que se consensuaron a partir de la opinión de varios especialistas del campo de la arquitectura y construcción (132 especialistas conformados por 68 arquitectos, 14 ingenieros civiles, 18 fabricantes de materiales y 32 promotores inmobiliarios) para unificar criterios sobre los factores que influyen durante la estimación de la vida útil y durabilidad de una edificación.

El tercer paso es definir el método particular a seguir para la realización de la estimación de la vida útil de cada uno de los proyectos que son objeto de estudio (v1 y v2). El método propuesto se resume en lo siguiente:

$$VUEV1 = VUR(F1)(F2)(F3)(F4)(F5)(F6)(F7)(1)$$

$$VUEV2 = VUR (F1) (F2) (F3) (F4) (F5) (F6) (F7) (2)$$

En donde: VUEv1 es la vida útil estimada para la vivienda 1; VUEv2 es la vida útil estimada para la vivienda 2; VUR es la vida útil de referencia, que se puede obtener de un registro

estadístico de viviendas similares. La obtención de la vida útil de cada proyecto a cada factor, dependiendo del tipo de información cualitativa, cuantitativa o mixta, se ve afectada por una variable con el fin de ajustar la confiabilidad en la ponderación de los proyectos a las condiciones más reales de la comparativa entre los dos tipos de escenarios, de la siguiente manera:

- 1. F1 es la calidad de los materiales y componentes constructivos, se mide cuantitativamente y la confiabilidad se considera al 100%.
- 2. F2 es el diseño arquitectónico y constructivo, se mide de forma cualitativa y la confiabilidad se considera en 95%.
- 3. F3 es la calidad de la mano de obra, se mide de forma cualitativa y la confiabilidad se considera en 95%.
- 4. F4 es el medio ambiente interior, se mide cuantitativamente y la confiabilidad se considera al 100%.
- 5. F5 es el medio ambiente externo, se mide cuantitativamente y la confiabilidad se considera al 100%.
- F6 son las condiciones del uso en el edificio, se pueden medir de forma mixta y la confiabilidad se considera en 98%.
- 7. F7 es el grado o nivel de mantenimiento, se puede medir de forma mixta y la confiabilidad se considera en 98%.

El cuarto paso es asignar los valores a los factores y obtener la vida útil para cada una de las viviendas del caso ejemplificado (v1 y v2), a través de las fórmulas designadas anteriormente (paso 3 de la metodología).

El quinto paso es la realización de la comparativa a través del análisis de los resultados de la valoración de los factores, identificando los valores más bajos para cada vivienda y proponer los puntos de durabilidad, ahí se deberán re-diseñar los proyectos, tanto de manera cuantitativa como de forma cualitativa con base en la premisa de la Figura 10 del presente libro.

Resultados

Definición del objeto de estudio

La v1 de este caso (economía media) está construida a base de muros de mampostería de cerámica hueca, reforzados con varilla de acero Ø 3/8" y asentados con mortero cemento-arena, proporción 1:4 sobre un cimiento de losa de concreto armada con acero. Tiene entrepisos y cubiertas de vigueta, y bovedilla con capa de compresión de 5 cm; está armada con malla de acero electro-soldada de 6x6-8/8 e impermeabilizada con membrana asfáltica.

La v2 de este caso (economía media) está construida a base de muros de carga de mampostería de tabique rojo recocido de la región, confinados con dalas y castillos reforzados con varilla de acero \varnothing 3/8" y asentados con mortero cemento-arena proporción 1:4 sobre un cimiento zapata corrida de concreto armado con acero. Tiene entrepisos y cubiertas de losas planas de concreto $F'c=210 \text{ kg/cm}^2$, reforzadas con varilla de \varnothing 3/8" e impermeabilizada con membrana asfáltica.

Definición de las variables de estudio

Por un lado, tenemos la variable de respuesta, en sí es la vida útil que se quiere estimar para cada una de las viviendas; por otro lado, tenemos las variables de control, son los factores que se consensuaron a partir de la opinión de varios especialistas del campo de la arquitectura.

Método propuesto para la realización de la estimación de la vida útil de cada uno de los proyectos que son objeto de estudio (v1 y v2)

El método propuesto se resume en lo siguiente (véase sección de metodología):

$$VUEV1 = VUR (F1) (F2) (F3) (F4) (F5) (F6) (F7) (1)$$

Asignación de los valores a los factores y obtención de la vida útil para cada una de las viviendas del caso ejemplificado (v1 y v2)

En Tabla 1 se muestran los valores asignados de forma organizada y consensuada por expertos (véase sección de metodología) a los factores que determinan la vida útil del caso de v1; para el caso de v2, se presentan los resultados en Tabla 2.

Se observa en Tabla 1 que los valores más bajos para v1 se obtuvieron en F1 (calidad de materiales) y en F5 (medio ambiente externo) con un valor de 0.9230 y 0.9272. En estos dos factores se debe rediseñar el proyecto para alcanzar un diseño más durable, atendiendo a las observaciones y aspectos de durabilidad identificados en la columna 3 de la Tabla 1.

Tabla 1

Ejemplo del formato y asignación de valores a los factores para estimar la vida útil y durabilidad en proyectos arquitectónicos y/ o componentes constructivos, según sus condiciones y características particulares.

Nombre del proyecto: v1, constructora con operaciones en México, Estados Unidos y Sudamérica.

Ubicación: Zinacantepec, Estado de México.

Descripción del proyecto (edificio) o del componente constructivo: vivienda (economía media) construida a base de muros de mampostería de cerámica hueca, reforzados con varilla de acero \emptyset 3/8" y asentados con mortero cemento-arena proporción 1:4; sobre un cimiento de losa de concreto armada con acero, con entrepisos y cubiertas de vigueta, y bovedilla con capa de compresión de 5 cm; armada con malla de acero electro-soldada de 6x6-8/8 e impermeabilizada con membrana asfáltica.

Nota: el desglose de estos factores es de forma general para el sistema completo en este ejemplo (edificio), pero si se requiere para componentes constructivos, estos factores se desglosarán de acuerdo con el detalle y a las especificaciones de cada componente y sus requerimientos.

Factores para esti- mar su vida útil (v1)	Valores asignados por factor (bajo=0.8, medio=1 o alto=1.2)	Observaciones y aspectos de durabilidad
		La calidad de un material está determinada
F1. Calidad de	0.9272	por sus componentes en sus materias primas
los materiales		(aspectos físicos y químicos), pero también por
y componentes		la manera en que fue producido, es decir, por
constructivos		sus características de manufactura, transporte
		y almacenaje. Su control de calidad dependerá
		desde la extracción de la materia prima, su
		selección y evaluación de dicha materia prima,
		hasta su manufactura, transporte, almacenaje y
		aplicación en la obra.
F1.1. Resistencias	0.9	De acuerdo con normas técnicas: compresión,
mecánicas		tensión, cortante, rayaduras, abrasión, impacto,
		dureza, etcétera.

	I	
F1.2. Manufactura,	0.9	Este punto se refiere al ciclo de vida del material
transporte y alma-		o componente constructivo, desde su planea-
cenaje		ción hasta concluir la obra.
F1.3. Composición	0.8	En algunos materiales como el concreto, se
química (contenido		deben prever condiciones de contenido químico
de álcalis, sustancias		que no dañe el componente constructivo, los
tóxicas, etcétera)		constructores ni a los usuarios.
F1.4. Impermeabi-	0.9	Prever el tipo y grado de impermeabilidad del
lidad		producto a usar.
F1.5. Eflorescencia	0.9	La eflorescencia se define como el depósito de
		sales (usualmente capa de color blanco sobre la
		superficie) que emerge del interior del material
		producida por carbonatación.
F1.6. Conductividad	1	Medidos en valores de W/(K·m).
térmica		
F1.7. Materiales y	1	Revisar si los materiales están certificados.
productos, organiza-		
dos por clase y tipo		
F1.8. Reciclabilidad	0.9	Revisar el índice de reciclabilidad del pro-
		ducto.
F1.9. Resistencia a la	1	Verificar la resistencia a corrosión de los pro-
corrosión		ductos según ISO 7253 e ISO 12944-2.
F1.10. Densidad	1	Medida en kg/m³.
F1.11. Resistencias al	0.9	Según ISO 6270 e ISO 4628/2.
hielo y a la conden-		
sación		
Promedio de F1 =	0.9272	
F2. Diseño arqui-	1.11	Diseño del edificio completo y sus componen-
tectónico y cons-		tes o partes, tales como la estructura, el envol-
tructivo		vente, las instalaciones y los acabados. Todo
		con apego a las normas de construcción, pero
		también de acuerdo con la premisa de que los
		elementos de construcción y arquitectónicos
		deben quedar lo más protegidos posible de los
		agentes de degradación.
	l	

Continúa...

		,
F2.1. Forma geométrica	1.2	La forma geométrica de los componentes y elementos estructurales influye de tal manera que los componentes más simples en su forma geométrica, como pudiera ser un cubo, una pirámide, formas redondeadas, superficies lisas, volúmenes simétricos, gruesos, anchos y de baja altura, etcétera, son las edificaciones que duran más (incluye diseño de espacios simples y complejos).
F2.2. Sistema constructivo	1	Según las especificaciones de diseño.
F2.3. Función y rendimiento	1	Según las pruebas de control de calidad.
F2.4. Estética	1.2	Según el concepto arquitectónico.
F2.5. Flexibilidad y modulación F2.6. Protección de elementos vulnerables a deterioro	1.2	La modulación arquitectónica y el diseño arquitectónico flexible son técnicas de diseño y construcción muy eficaces para obtener edificios de fácil adaptabilidad a distintos usos a través del tiempo; por tanto, son más durables y más accesibles para el mantenimiento, reparación y remplazo de los componentes constructivos. Los elementos arquitectónicos y constructivos para protección del inmueble son muy importantes, ya que simples elementos como voladizos, parasoles, goteros, cubiertas, pen-
F2.7. Diseño estructural F2.8. Diseño de la	1.1	dientes, etcétera, prolongan la durabilidad de los componentes constructivos y, por tanto, de todo el edificio (incluyendo control solar e impermeabilización). Cálculo en concordancia con los requerimientos de carga y con los reglamentos constructivos. En concordancia con las normas construc-
envolvente F2.9. Diseño de las	1.1	tivas. De acuerdo con los requerimientos de diseño.
instalaciones	1.1	De acacido con los requerimientos de diseño.

F2.10. Diseño de los	1.2	Selección y uso de materiales durables y
acabados		resistentes.
Promedio de F2=	1.11	
F3. Calidad de la	1.0833	El nivel de la mano de obra en la ejecución de
mano de obra		los trabajos se mide de acuerdo con la prepara-
		ción técnica del constructor o instalador y, por
		supuesto, su experiencia en el tipo de proyectos
		que está ejecutando.
F3.1. Ejecución de	0.9	Construcción, montaje e instalaciones.
los trabajos de cons-		
trucción		
F3.2. Experiencia del	1.2	Experiencia demostrable a través de proyectos
constructor		construidos y portafolios.
F3.3. Certificación de	1	En actividades de alta especialidad.
la mano de obra		
F3.4. Planeación,	1	Administración del proyecto.
control y administra-		
ción de la obra		
F3.5. Supervisión de	1.2	Supervisión externa calificada.
la obra		
F3.6. Uso de herra-	1.2	Acorde con los materiales y sistemas construc-
mientas y equipos		tivos empleados.
adecuados		
Promedio de F3=	1.0833	
F4. Medio ambiente	1.0375	Los agentes agresivos del medio ambiente
interior		interno: humedad, temperatura, ventilación,
		corrosión, condensación interna, composición
		de los elementos construidos, agentes químicos
		y físicos existentes al interior del inmueble.
F4.1. Humedad y	1.1	Depende de la cantidad de agua y radiación so-
temperatura interna		lar retenida por el inmueble (Normas ASHRAE).
F4.2. Agentes quí-	1	Agentes retenidos al interior tanto por emisión
micos y biológicos al		de sustancias de los materiales usados (princi-
interior		palmente COV) como la acumulación de agentes
		biológicos por humedad.
F4.3. Tipo de ventila-	1.1	Natural, artificial o mixta. Según la Norma
ción interna		62.1-2010 de la ASHRAE ventilación para una
		calidad aceptable.
		candad aceptable.

F4.4. Condensación	1.1	Según ISO 6270 e ISO 4628/2.
interna		
F4.5. Termitas	1.2	Uso de aditivos y protectores en componen-
dentro de la madera		tes vulnerables.
y otros insectos		
instalados en la		
construcción		
F4.6. Vibraciones	0.9	Según la ISO 10816.
del interior		
F4.7. Grado de co-	0.9	Según ISO 7253 e ISO 12944-2.
rrosión y oxidación		
al interior		
F4.8. Clase higromé-	1	Según ISO 13788, ISO 10545-8 – ISO 10545-
trica de los espacios		9 – ISO 10545-11 – ISO 10545-12.
Promedio de F4=	1.0375	
F5. Medio ambien-	0.9230	Localización y ubicación del edificio, clima ex-
te externo		terior (humedad y temperatura), emisiones de
		vehículos e industrias, lluvia ácida, etcétera.
F5.1. Temperatura	0.9	Las variaciones significativas de temperatura
		pueden ocasionar deterioro en algunos ma-
		teriales debido a los movimientos y contrac-
		ciones que pueden sufrir en combinación con
		otros factores de degradación (véase normas
		ASHRAE).
F5.2. Humedad-	0.8	Contribuye para una degradación biológica por
agua		corrosión, oxidación en los metales, contracción
		de materiales por heladas, condensación, dete-
		rioro de los materiales e ingreso y absorción del
		agua (ASHRAE).
F5.3. Grado de	0.9	También pueden ser agentes de deterioro
exposición al viento-		biológico y químico en los materiales, además
aire y contaminantes		de contaminar la calidad del aire al interior de
del aire: carbonatos,		los edificios y causar humedad en los compo-
sulfatos, cloruros,		nentes; aquí también se incluye la lluvia ácida
CO ₂ , PH, SO ₄ , NO ₃ ,		(normas NOM y NMX).
etcétera		' ' '

	1	1
F5.4. Tipo de contaminantes y emisiones a la atmósfera (urbana, rural, marina o industrial)	0.9	CO ₂ , PH, SO ₄ , NO ₃ , etcétera.
F5.5. Exposición a la radiación ultravioleta	0.8	Los rayos ultravioleta pueden causar severos daños a ciertos materiales, sobre todo en exteriores de edificios porque suelen ocasionar reacciones químicas y cambios físicos en los materiales (ASHRAE e ISO). Según ISO 4892-3, en 13523-10, ASTM D4587.
F5.6. Exposición al agua de lluvia y hu- medad del entorno, por zona y precipita- ción pluvial	0.9	Definida por precipitación pluvial del lugar y las condiciones de humedad del componente.
F5.7. Tipo de suelo, algunas sustancias del contenido del suelo pueden ser nocivas para los componen- tes constructivos	1.1	Según normas: NMX-AA-146-SCFI-2008; NMX-AA-132-SCFI-2006; NMX-AA-022-1985.
F5.8. Agentes bio- lógicos	1.1	Todo lo que propicie hongos, moho, parásitos adheridos a los materiales, averías por roedores, insectos y/ o aves, son agentes que dañan la vida útil de los subsistemas y del sistema completo.
F5.9. Condensación externa	0.8	Según ISO 6270 e ISO 4628/2.
F5.10. Grado de co- rrosión y oxidación externa	0.8	Según ISO 7253 e ISO 12944-2.
F5.11. Riesgos naturales como sismos y fallas geológicas	0.9	Normas técnicas complementarias del re- glamento de construcciones en la ciudad de México.
F5.12. Daño por van- dalismo	1.2	Protección de acabados y componentes constructivos vulnerables.

F5.13. Vibraciones del exterior	0.9	Según la ISO 10816.
Promedio de F5=	0.9230	
F6. Condiciones del	1.0333	Actividades, condiciones de uso y operaciones
uso en el edificio		específicas del inmueble por el usuario y opera-
		rio como equipos electromecánicos y equipos
		de instalaciones especiales: aire acondicionado,
		iluminación y equipos de seguridad. En general,
		todas las condiciones de uso que se le dan al
		inmueble en todas sus partes y componentes.
F6.1. Condiciones de	1.1	Verificar si existen manuales de operación del
ocupación y activida-		inmueble.
des por espacio		
F6.2. Condiciones de	1	Verificar concentraciones de personas, equipos
acceso y puntos		o mobiliario.
de reunión		
F6.3. Grado y tipo de	1	Desde tráfico de vehículos hasta peatones,
tráfico por espacio		motos y bicicletas.
Promedio de F6=	1.0333	
F7. Grado o nivel de	1	Calidad y frecuencia en la conservación del
mantenimiento		inmueble, así como el tipo o grado de accesi-
		bilidad al mantenimiento de los componentes
		constructivos.
F7.1. Calidad del	1	Por personas calificadas y bajo un manual de
mantenimiento		mantenimiento.
F7.2. Frecuencia del	1.2	Verificar una programación adecuada.
mantenimiento		
F7.3. Grado de acce-	0.8	Para edificios completos se determina en lo
sibilidad al manteni-		general y en componentes constructivos, de
miento		manera específica y por partes.
Promedio de F7=	1	

Fuente: Elaboración propia con base en la ejecución del método propuesto.

A continuación se presenta el análisis de los factores de vida útil para v2, en donde se observa que el valor más bajo fue F5 con 0.9230 (medio ambiente externo) y a continuación F3 con 0.9833.

Tabla 2

Ejemplo del formato y asignación de valores a los factores para estimar la vida útil en proyectos arquitectónicos y/o componentes constructivos, según sus condiciones y características particulares

Nombre del proyecto: v2, constructora de alcance nacional.

Ubicación: Zionacantepec, Estado de México.

Descripción del edificio o del componente constructivo: vivienda (economía media) construida a base de muros de carga de mampostería de tabique rojo recocido de la región, confinados con dalas y castillos reforzados con varilla de acero Ø 3/8"; asentados con mortero cemento-arena proporción 1:4 sobre un cimiento zapata corrida de concreto armado con acero, con entrepisos y cubiertas de losas macizas de concreto F'c= 210 kg/cm² reforzadas con varilla de Ø 3/8"; impermeabilizada con membrana asfáltica.

Nota: el desglose de estos factores es de forma general para el sistema completo en este ejemplo (edificio), pero si se requiere para componentes constructivos, estos factores se desglosarán de acuerdo con el detalle y las especificaciones de cada componente y sus requerimientos.

Factores para esti- mar su vida útil	Valores asigna- dos por factor (bajo=0.8, medio=1 o alto=1.2)	Observaciones y aspectos de durabilidad
F1. Calidad de los materiales y componentes constructivos	1.0727273	La calidad de un material está determinada por sus componentes en sus materias primas (aspectos físicos y químicos), pero también por su manera en que fue producido, es decir, por sus características de manufactura, transporte y almacenaje. Su control de calidad dependerá desde la extracción de la materia prima, su selección y evaluación de dicha materia prima, hasta su manufactura, transporte, almacenaje y aplicación en la obra.

Continúa...

F1.1. Resistencias	1.1	Compresión, tensión, cortante, rayaduras,
mecánicas		abrasión, impacto, dureza, etcétera.
F1.2. Manufactura,	1.1	Este punto se refiere al ciclo de vida del material
transporte y alma-		o componente constructivo, desde su planea-
cenaje		ción hasta concluir la obra.
F1.3. Composición	0.8	En algunos materiales como el concreto, se
química, contenido		deben prever condiciones de contenido químico
de álcalis, sustancias		que no dañen el componente constructivo, los
tóxicas, etcétera		constructores ni a los usuarios.
F1.4. Impermeabi-	1	Prever el tipo y grado de impermeabilidad del
lidad		producto a usar.
F1.5. Eflorescencia	1.1	La eflorescencia se define como el depósito de
		sales (usualmente capa de color blanco sobre la
		superficie) que emerge del interior del material
		producida por carbonatación.
F1.6. Conductividad	1.2	Medidos en valores de W/ (K·m).
térmica		
F1.7. Clase y tipo	1.1	Revisar si los materiales están certificados.
de los materiales y		
productos		
F1.8. Reciclabilidad	1	Revisar el índice de reciclabilidad del pro-
		ducto.
F1.9. Resistencia a la	1.1	Verificar la resistencia a la corrosión de los pro-
corrosión		ductos según ISO 7253 e ISO 12944-2.
F1.10. Densidad	1.1	Medida en kg/m³
F1.11. Resistencias al	1.2	Según ISO 6270 e ISO 4628/2.
hielo y a la conden-		
sación		
Promedio de F1 =	1.0727273	
F2. Diseño arqui-	1.04	Diseño del edificio completo y sus compo-
tectónico y cons-		nentes o partes, tales como la estructura, el
tructivo		envolvente, las instalaciones y los acabados.
		Todo con apego a las normas de construcción,
		pero también de acuerdo con la premisa en que
		los elementos de construcción y arquitectóni-
		cos deben quedar lo más protegidos posible de
productos F1.8. Reciclabilidad F1.9. Resistencia a la corrosión F1.10. Densidad F1.11. Resistencias al hielo y a la condensación Promedio de F1 = F2. Diseño arquitectónico y cons-	1.1 1.1 1.2 1.0727273	ducto. Verificar la resistencia a la corrosión de los productos según ISO 7253 e ISO 12944-2. Medida en kg/m³ Según ISO 6270 e ISO 4628/2. Diseño del edificio completo y sus componentes o partes, tales como la estructura, el envolvente, las instalaciones y los acabados. Todo con apego a las normas de construcción, pero también de acuerdo con la premisa en que los elementos de construcción y arquitectóni-

F2.1. Forma geomé-	1	La forma geométrica de los componentes y
trica		elementos estructurales influye de tal manera
		que los componentes más simples en su forma
		geométrica, como pudiera ser un cubo, una
		pirámide, formas redondeadas, superficies lisas,
		volúmenes simétricos, gruesos, anchos y de
		baja altura, etcétera, son las edificaciones que
		duran más (incluye diseño de espacios simples
		y complejos).
F2.2. Sistema cons-	1.2	Según las especificaciones de diseño.
tructivo		
F2.3. Función y ren-	1.1	Según las pruebas de control de calidad.
dimiento		
F2.4. Estética	0.8	Según el concepto arquitectónico.
F2.5. Flexibilidad y	0.8	La modulación arquitectónica y el diseño arqui-
modulación		tectónico flexible son técnicas de diseño y cons-
		trucción muy eficaces para obtener edificios de
		fácil adaptabilidad a distintos usos a través
		del tiempo; por tanto, son más durables y más
		accesibles para el mantenimiento, reparación y
		remplazo de los componentes constructivos.
F2.6. Protección de	1	Los elementos arquitectónicos y construc-
elementos vulnera-		tivos para protección del inmueble son muy
bles a deterioro		importantes ya que simples elementos como
		voladizos, parasoles, goteros, cubiertas, pen-
		dientes, etcétera, prologan la durabilidad de
		los componentes constructivos y, por tanto,
		de todo el edificio (incluyendo control solar e
		impermeabilización).
F2.7. Diseño estruc-	1.2	Cálculo en concordancia con los requerimientos
tural		de carga y con los reglamentos constructivos.
F2.8. Diseño de la	1.2	En concordancia con las normas construc-
envolvente		tivas.
F2.9. Diseño de las	1.1	De acuerdo con los requerimientos de diseño.
instalaciones		
F2.10. Diseño de los	1	Selección y uso de materiales durables y
acabados		resistentes.
Promedio de F2=	1.04	

F3. Calidad de la	0.9833333	El nivel de la mano de obra en la ejecución de
mano de obra		los trabajos se mide de acuerdo con la prepa-
		ración técnica del constructor o instalador, y
		por supuesto, a su experiencia en el tipo de
		proyectos que está ejecutando.
F3.1. Ejecución de	1	Construcción, montaje e instalaciones.
los trabajos de cons-		
trucción		
F3.2. Experiencia del	0.9	Experiencia demostrable a través de proyectos
constructor		construidos y portafolios.
F3.3. Certificación de	0.9	En actividades de alta especialidad.
la mano de obra		
F3.4. Planeación,	1.1	Administración del proyecto.
control y administra-		
ción de la obra		
F3.5. Supervisión de	1	Supervisión externa calificada.
la obra		
F3.6. Uso de herra-	1	Acorde con los materiales y sistemas construc-
mientas y equipos		tivos empleados.
mientas y equipos adecuados		tivos empleados.
	0.9833333	tivos empleados.
adecuados	0.9833333 1.125	tivos empleados. Los agentes agresivos del medio ambiente
adecuados Promedio de F3=		
adecuados Promedio de F3= F4. Medio ambiente		Los agentes agresivos del medio ambiente
adecuados Promedio de F3= F4. Medio ambiente		Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación,
adecuados Promedio de F3= F4. Medio ambiente		Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición
adecuados Promedio de F3= F4. Medio ambiente		Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos
adecuados Promedio de F3= F4. Medio ambiente interior	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble.
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación so-
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE).
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes quí-	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (prin-
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (principalmente COV) como por la acumulación de
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al interior	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (principalmente COV) como por la acumulación de agentes biológicos por humedad.
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al interior F4.3. Tipo de ventila-	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (principalmente COV) como por la acumulación de agentes biológicos por humedad. Natural, artificial o mixta. Según la Norma
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al interior F4.3. Tipo de ventila-	1.125	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (principalmente COV) como por la acumulación de agentes biológicos por humedad. Natural, artificial o mixta. Según la Norma 62.1 2010 de la ASHRAE ventilación para una
adecuados Promedio de F3= F4. Medio ambiente interior F4.1. Humedad y temperatura interna F4.2. Agentes químicos y biológicos al interior F4.3. Tipo de ventilación interna	1.125 1.2 1.1	Los agentes agresivos del medio ambiente interno: humedad, temperatura, ventilación, corrosión, condensación interna, composición de los elementos construidos, agentes químicos y físicos existentes al interior del inmueble. Depende de la cantidad de agua y radiación solar retenida por el inmueble (Normas ASHRAE). Agentes retenidos al interior tanto por emisión de sustancias de los materiales usados (principalmente COV) como por la acumulación de agentes biológicos por humedad. Natural, artificial o mixta. Según la Norma 62.1 2010 de la ASHRAE ventilación para una calidad aceptable.

F4.5. Termitas dentro de la madera y otros insectos instalados en la construcción	1.2	Uso de aditivos y protectores en componentes vulnerables.
F4.6. Vibraciones del interior	1.2	Según la ISO 10816.
F4.7. Grado de co- rrosión y oxidación al interior	1	Según ISO 7253 e ISO 12944-2.
F4.8. Clase higrométrica de los espacios	1.1	Según ISO 13788, ISO 10545-8 – ISO 10545-9 – ISO 10545-11 – ISO 10545-12.
Promedio de F4=	1.125	
F5. Medio ambiente externo	0.9230769	Localización y ubicación del edificio, clima ex- terior (humedad y temperatura), emisiones de vehículos e industrias, lluvia ácida, etcétera.
F5.1. Temperatura	0.9	Las variaciones significativas de temperatura pueden ocasionar deterioro en algunos materiales debido a los movimientos y contracciones que pueden sufrir en combinación con otros factores de degradación. (véase normas ASHRAE).
F5.2. Humedad- agua	0.8	Contribuye para una degradación biológica, por corrosión, oxidación en los metales, contracción de materiales por heladas, condensación, deterioro de los materiales e ingreso y absorción del agua (ASHRAE).
F5.3. Grado de exposición al viento-aire y contaminantes del aire: carbonatos, sulfatos, cloruros, CO ₂ , PH, SO ₄ , NO ₃ , etcétera	0.9	También pueden ser agentes de deterioro bio- lógico y químico en los materiales, además de contaminar la calidad del aire al interior de los edificios y causar humedad en los componentes; también se incluye a la lluvia ácida (Normas NOM y NMX).
F5.4. Tipo de conta- minantes y emisiones a la atmósfera (urba- na, rural, marina o industrial)	0.9	CO ₂ , PH, SO ₄ , NO ₃ , etcétera.

F5.5. Exposición a la radiación ultravioleta	0.8	Los rayos ultravioleta pueden causar severos daños a ciertos materiales, sobre todo en exteriores de edificios porque pueden ocasionar reacciones químicas y cambios físicos en los materiales (ASHRAE e ISO). Según ISO 4892-3, en 13523-10, ASTM D4587.
F5.6. Exposición al	0.9	Definida por precipitación pluvial del lugar y las
agua de lluvia y hu-		condiciones de humedad del componente.
medad del entorno,		·
por zona y precipita-		
ción pluvial		
F5.7. Tipo de sue-	1.1	Según normas: NMX-AA-146-SCFI-2008; NMX-
lo, algunas sustan-		AA-132-SCFI-2006; NMX-AA-022-1985.
cias del contenido		
del suelo pueden		
ser nocivas para los		
componentes cons-		
tructivos		
F5.8. Agentes bio-	1.1	Todo lo que propicie hongos, moho, parásitos
lógicos		adheridos a los materiales, averías por roedo-
		res, insectos y/o aves son agentes que dañan
		la vida útil de los subsistemas y del sistema
		completo.
F5.9. Condensación	0.8	Según ISO 6270 e ISO 4628/2.
externa		
F5.10. Grado de co-	0.8	Según ISO 7253 e ISO 12944-2.
rrosión y oxidación		
externa		
F5.11. Riesgos natu-	0.9	Normas técnicas complementarias del re-
rales como sismos y		glamento de construcciones en la ciudad de
fallas geológicas		México.
F5.12. Daño por van-	1.2	Protección de acabados y componentes cons-
dalismo		tructivos vulnerables.
F5.13. Vibraciones	0.9	Según la ISO 10816.
del exterior		
Promedio de F5=	0.9230769	

	,	
F6. Condiciones del uso en el edificio	1.0333333	Actividades, condiciones de uso y operaciones específicas del inmueble por el usuario y operario como equipos electromecánicos y equipos de instalaciones especiales: aire acondicionado, iluminación y equipos de seguridad. En general, todas las condiciones de uso que se le dan al inmueble en todas sus partes y componentes.
F6.1. Condiciones de	1.1	Verificar si existen manuales de operación del
ocupación y activida-		inmueble.
des por espacio		
F6.2. Condiciones de	1	Verificar concentraciones de personas, equipos
acceso y puntos		o mobiliario.
de reunión		
F6.3. Grado y tipo de	1	Desde tráfico de vehículos hasta peatones,
tráfico por espacio		motos y bicicletas.
Promedio de F6=	1.0333333	
F7. Grado o nivel de	1.1333333	Calidad y frecuencia en la conservación del
mantenimiento		inmueble, así como el tipo o grado de accesi-
		bilidad al mantenimiento de los componentes constructivos.
F7.1. Calidad del	1.2	Por personas calificadas y bajo un manual de
mantenimiento		mantenimiento.
F7.2. Frecuencia del	1.1	Verificar una programación adecuada.
mantenimiento		
F7.3. Grado de acce-	1.1	En edificios completos se determina en lo gene-
sibilidad al manteni-		ral y en componentes constructivos de manera
miento		específica y por partes.
Promedio de F7=	1.1333333	

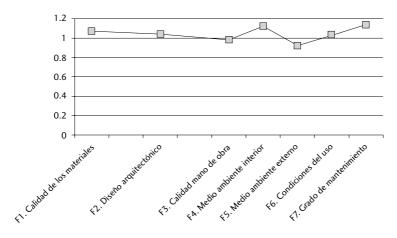

Fuente: Elaboración propia con base en la ejecución del método propuesto.

Tabla 3 Resumen de v2

Resumen de análisis de factores para v2	Valores
F1. Calidad de los materiales	1.0727
F2. Diseño arquitectónico	1.04
F3. Calidad mano de obra	0.9833
F4. Medio ambiente interior	1.125
F5. Medio ambiente externo	0.923
F6. Condiciones del uso	1.0333
F7. Grado de mantenimiento	1.1333

Fuente: Elaboración propia con base en la ejecución del método propuesto.

Figura 11 Resumen del análisis de los factores de vida útil para la v2

Fuente: Elaboración propia con base en la ejecución del método propuesto.

Obsérvese en la Figura 11 que los valores más bajos son en F5 y F3, por tanto, es donde se deberá trabajar más en la etapa de rediseño y diseño del inmueble para incrementar su vida útil y mejorar la durabilidad del proyecto en cuestión.

El siguiente paso es obtener las vidas útiles de ambas viviendas utilizando las fórmulas:

$$VUEV1 = VUR(F1)(F2)(F3)(F4)(F5)(F6)(F7)(1)$$

$$VUEV2 = VUR (F1) (F2) (F3) (F4) (F5) (F6) (F7) (2)$$

La vida útil de referencia (VUR) para este tipo de viviendas y según el tipo de edificio, su uso y sus condiciones de accesibilidad en el mantenimiento será igual VUR= 60 años, según la información de la norma técnica canadiense CSA S478-95-R2001 (2) y de información equivalente a la norma ISO 15686, en la cual también se basa la versión LEED® de Canadá sobre diseño de la durabilidad en edificios (Green Building Council, 2004).

Estimación de la vida útil para v1

Sustituyendo y ajustando valores de confiabilidad:

$$VUEV1 = VUR (F1) (F2) (F3) (F4) (F5) (F6) (F7) (1)$$

$$VUEV1 = 60 (0.9272) [(1.11) (0.95)] [(1.0833) (0.95)] (1.0375) (0.9230) [(1.0333) (0.98)] [(1) (0.98)]$$

Tenemos:

$$VUEV1 = 60 (0.9272) (1.0545) (1.0291) (1.0375) (0.9230) (1.0126) (0.98)$$

VUEv1 = 57.3697 años

Obsérvese que la vida útil de v1 está por debajo de la vida útil de referencia, por lo que será necesario rediseñar el proyecto con base en corregir los factores F5 y F1, que fueron los valores más bajos en el análisis por factores.

Estimación de la vida útil para v2

Sustituyendo y ajustando valores de confiabilidad:

Tenemos:

VUFv2 = 69.3632 años

Obsérvese que para v2, la vida útil estimada rebasa la vida útil de referencia, por tanto, no es necesario un rediseño del proyecto y cumple con lo señalado en la Figura 10.

Paso final, realizar la comparativa del proyecto

Según los valores obtenidos en el análisis de vida útil, tenemos:

VUEv1 = 57.3697 años.

VUEv2 = 69.3632 años

La comparativa muestra que: la vivienda tipo 2 (v2), por sus características y factores que la rodean, es la más durable y de mayor vida útil; en este caso, para v2 no se requiere re-diseñar el proyecto, de la fase de diseño se pasaría directamente a la fase de construcción. Por el contrario, en la vivienda tipo 1 (v1), al ser menor la VUE que la VUR, se debe rediseñar y volver a la fase de diseño, poniendo atención ahora en los factores F5 y F1 para mejorar el diseño por durabilidad y pasar a la etapa de construcción.

En la columna 3, correspondiente a observaciones y aspectos de durabilidad, se pueden revisar los criterios de diseño por durabilidad para la vivienda que requiere rediseñarse, particularmente en los puntos F5 y F1. La Tabla 1 se refiere a v1, pero los puntos referentes a observaciones y aspectos de durabilidad son los mismos que hay que tomar en cuenta para ambas viviendas en el caso de rediseño.

Conclusión

Durante el proceso de diseño arquitectónico se requiere de un valor en años que determine una vida útil del inmueble para partir de un punto de referencia, y poder estimar y realizar predicciones acerca de la vida útil.

Existen muchas variables que pueden afectar la durabilidad y vida útil de un edificio, por lo que éstas deben ser ordenadas de tal forma que incluyan todos los posibles factores que deterioran los componentes de los edificios.

Este trabajo propone una metodología para la estimación de la vida útil de un edificio, componentes constructivos o conjuntos de edificios usando información cuantitativa y cualitativa para el cálculo de una vida útil estimada que se aproxime lo más posible a una vida útil de diseño, desde el punto de vista de los requerimientos arquitectónicos.

La obtención de la vida útil de cada proyecto dependerá de cada factor, cualquier tipo de información, ya sea cualitativa, cuantitativa o mixta, puede verse afectado por una variable con el fin de ajustar la confiabilidad en la ponderación de los proyectos a las condiciones más reales de la comparativa entre los dos o más tipos de escenarios.

Para la valoración de los factores, se deben identificar los valores más bajos para cada proyecto y proponer entonces los puntos de durabilidad específicos en donde se deberán rediseñar los proyectos.

En el caso del ejemplo de aplicación del método, se concluye que la vivienda tipo 2 (v2), por sus características y factores que la rodean, es la más durable y de mayor vida útil; en el caso de v2, no se necesita rediseñar el proyecto, de la fase de diseño se pasaría directamente a la fase de construcción. La vivienda tipo 1 (v1), al ser menor la VUE que la VUR, se debe rediseñar y volver a la fase de diseño, poniendo atención en los factores F5 y F1 para mejorar el diseño por durabilidad y pasar a la etapa de construcción.

Capítulo 3 Introducción a la estimación de la vida útil y durabilidad de una tenso-estructura a través del método por factores de ISO 15686

En proyectos de arquitectura y edificación, al inicio del proceso de diseño, siempre es necesario determinar una vida útil de diseño, la cual se espera para el edificio; en muchos despachos de arquitectura y construcción de varios países, generalmente este aspecto no es tomado en cuenta y se da por hecho que los edificios son para siempre o que tendrán un prolongado rendimiento óptimo para el cual fueron diseñados y construidos.

Desafortunadamente esto no pasa y, por lo general, se derivan muchos problemas en el rendimiento de los componentes constructivos, generando gastos excesivos en los costos de mantenimiento correctivo que no estaban previstos, precisamente por no tener una planeación adecuada de la vida útil del edificio y/o de sus componentes constructivos durante el proceso de diseño del mismo.

Antecedentes del tema

La industria de la construcción de edificios es una de las que más contaminan el ambiente (Villas, 1995), pero también es una de las que mayor riqueza económica y bienestar social producen en el mundo. Sustentabilidad, entendida como la forma en que los grupos humanos satisfacen sus necesidades sin comprometer los requerimientos de las generaciones futuras, es la definición de la que parte este libro, buscando entender la importancia que tiene la estimación de la vida útil de los edificios (en este caso, de una tenso-estructura) dentro del proceso de diseño sustentable de los mismos.

Por tanto, el *diseño sustentable* de edificios básicamente significa incluir las distintas premisas de sustentabilidad (en materia ambiental, económica y social) durante el proceso de planeación, prediseño, diseño, construcción, uso, operación y mantenimiento de cualquier inmueble hasta el fin de su vida útil e inclusive de manera posterior a ésta, es decir, a través de todo el ciclo de vida del edificio (Hernández, 2010). Todo ello con el propósito principal de disminuir y mitigar los impactos ambientales por la industria de la edificación, mejorarando así la calidad de vida del ser humano y su entorno, a través de la metodología del Análisis por Ciclo de Vida (ACV), procedimiento para mitigar y disminuir los impactos ambientales en cada fase del ciclo de vida de los productos (International, 2004), en este caso, los edificios y sus componentes.

La sustentabilidad se relaciona directamente con el ACV porque en esta metodología se analizan los componentes de construcción de tal forma que puedan mantenerse en buen funcionamiento durante su vida útil para alcanzar valores óptimos de rendimiento. Asimismo, busca la durabilidad y confort del inmueble a través del diseño por ciclo de vida, que significa incluir en el proceso de diseño las distintas fases del ciclo de vida del inmueble para poder analizar, estudiar y definir estrategias de diseño sustentable para lograr un producto eficiente, funcional, estético, y con un

alto rendimiento y durabilidad, para lo cual fue diseñado y construido (Hernández, 2008).

En la actualidad, la norma que rige la planeación de la vida útil en los edificios es ISO 15686. Antes de describir la metodología de ISO a emplear para la estimación de la vida útil en este ejemplo de una tenso-estructura, mencionaremos algunos conceptos y terminología básica en materia de vida útil para su mejor comprensión:

Vida útil. Se define como el periodo de tiempo después de la instalación o construcción durante el cual un edificio o sus partes cumplen o exceden los requisitos de rendimiento para lo cual fueron diseñados y construidos, por lo que se debe hacer uso del mantenimiento correctivo significativo y de reparaciones de materiales y componentes constructivos. Por consecuencia, tiene un impacto económico y funcional distinto a lo planeado originalmente (International, 2000).

Vida útil de diseño. Se trata de la vida útil que el diseñador selecciona para todo el edificio durante su proceso de diseño, principalmente en las fases de prediseño y diseño; depende de las expectativas del cliente, de los requerimientos del usuario y del edificio. La selección de la vida útil de diseño del inmueble se puede basar en la experiencia del diseñador y en una vida útil de referencia de fuentes de información confiables (International, 2000).

Vida útil de referencia. Ésta puede ser una vida útil seleccionada de la experiencia de otros diseñadores o de otros edificios, incluso puede ser una vida útil estimada y calculada mediante un método cuantitativo o cualitativo, bajo un modelo o método probado (International, 2000).

Vida útil estimada. Se obtiene de distintas formas, una es mediante los datos proporcionados por los fabricantes de materiales y componentes constructivos. Otra manera es mediante análisis y cálculos basados en métodos como el de ISO 15686, el cual se define como no predictivo; también es posible a través de modelos y pruebas en laboratorio (predictivos), las cuales son las más exactas, pero las más costosas (International, 2000).

Rendimiento. Es cuando un producto, material o componente constructivo cumple con los requerimientos técnicos, funcionales y estéticos para los cuales fue seleccionado y/o diseñado. Se orienta para determinado proyecto y periodo de uso o de servicio, sin la realización de reparaciones ni mantenimiento correctivo significativo (Building, 2007).

Durabilidad. Se entiende como la capacidad que un edificio o componente tiene para alcanzar el rendimiento óptimo de sus funciones en un determinado ambiente o sitio, bajo un determinado tiempo sin realizar trabajos de mantenimiento correctivo ni reparaciones (Canadian, 2001).

Metodología de la norma ISO 15686

La metodología propuesta para la estimación de la vida útil en los edificios y estructuras consiste en los siguientes puntos:

- 1. Identificar las condiciones generales de servicio, tipo de edificio, requerimientos funcionales y rendimiento del edificio o de la estructura en este caso.
- 2. Determinación de la vida útil de diseño de la tensoestructura y sus componentes.

- 3. Determinar e identificar los factores que afectan la durabilidad del proyecto.
- 4. Estimación de la vida útil de la tenso-estructura y de sus componentes constructivos (con el método por factores de ISO 15686).

Identificar las condiciones generales de servicio, tipo de inmueble, requerimientos funcionales y rendimiento del edificio. En esta primera etapa de la aplicación del método se identifican las condiciones generales de servicio del edificio o estructura, y se definen las normas y lineamientos que se van a emplear para determinar la vida útil del proyecto, requerimientos del dueño del inmueble, tipo de edificio, usuario del edificio, tipo y ubicación de los componentes constructivos (accesibilidad de los componentes). Además se toman las consideraciones económicas del proyecto respecto a la planeación de su vida útil, frecuencia del mantenimiento del edificio y sus reparaciones relevantes, las cuales afectan el rendimiento y el presupuesto del mantenimiento correctivo.

Determinación de la vida útil de diseño del edificio y sus componentes. Para determinar la vida útil del diseño de un edificio es válido partir de una vida útil de referencia que puede estar definida por la práctica y experiencia profesional. También es posible mediante la utilización de información confiable y previamente registrada de forma estadística sobre determinados tipos y categorías de edificaciones, de condiciones de durabilidad, de rendimiento y de condiciones de factibilidad económica y técnica.

Determinar e identificar los factores más relevantes que afectan la durabilidad del proyecto. Para determinar estos factores, es necesario basarse en la norma técnica ISO 15686 y en la norma CSA S478-95, principalmente. Además, es importante basarse en el criterio del arquitecto, diseñador o proyectista del edificio con base también en su experiencia profesional y en criterios de diseño arquitectónico sustentable.

Estimación de la vida útil del edificio y de sus componentes constructivos. Para la estimación de la vida útil del edificio y sus componentes, se sugiere usar la norma ISO 15686, complementada con la norma canadiense CSA S478-95.

Resultados. Estimación de la vida útil de una tensoestructura ubicada en la ciudad de Toluca, México

De acuerdo con la metodología planteada, es posible hacer lo descrito a continuación.

Identificar las condiciones generales de servicio, tipo de estructura y materiales, requerimientos funcionales y rendimientos

Para este caso de aplicación del método se cuenta con un proyecto de una tenso-estructura destinada al acceso de un edificio de oficinas ubicado en la ciudad de Toluca, México. Ahí se requiere una vida útil de diseño relativamente corta, de 15 años, donde existen condiciones técnicas accesibles al mantenimiento, según los datos contenidos en las tablas 4 y 5 y equivalentes a la información de la norma ISO 15686. La estructura servirá como parte del acceso al inmueble y como protector solar y de lluvia de la fachada principal del edificio.

Considerando que el procedimiento de construcción de la tenso-estructura está planeado, en su mayoría, de manera prefabricada y en una parte mínima in situ, es recomendable construirlo con una malla bidimensional de poliéster y relleno de PVC por ambas caras, color blanco y de uso arquitectónico. Además, debe estar hecha a base de una membrana colgante de 1.2 mm de espesor, una resistencia a la tracción de 200 daN/cm compuesta de un paraboloide de 10 x 8 m, sostenido y tensado por cables de acero de 6 x19+AA, el

cual está compuesto por seis cordones conformados por 19 alambres en torno a un alma de acero. Los cables deben ir fijados al pretil del edificio y otros puntos fijados al piso y, de igual manera, los mástiles de hierro reticulares anclados al piso.

Algunas recomendaciones técnicas de durabilidad de inicio serían: en lo referente a la membrana, se sugiere un tratamiento superficial antiadherente y antigoteo por condensación, asegurar de 10 a 20 % de elongación a la rotura, que la forma sea lo más simétrica posible; también se recomienda un tratamiento abrasivo para asegurar las uniones de los rollos. En lo referente al cable y a los accesorios metálicos, se recomienda que éstos sean de acero galvanizado y que además los cables sean forrados, para su mayor durabilidad; en lo referente a los mástiles y a las conexiones, igualmente que sean de acero galvanizado o acero dulce inoxidable y de forma lo más simétrica posible.

Determinación de la vida útil de diseño de la tenso-estructura

Continuando con el procedimiento del método propuesto para la estimación de la vida útil y durabilidad en los edificios, tenemos que la vida útil de diseño de la tenso-estructura (VUD), según el tipo de edificio, su uso y sus condiciones de accesibilidad en el mantenimiento, será igual a VUD = 15 años.

Según la información de la norma técnica canadiense CSA S478-95 (R2001) y de las tablas 4, 5 y 6 que a continuación se describen, equivalentes a la norma ISO 15686 y en la cual también se basa la versión LEED® de Canadá sobre diseño de la durabilidad en edificios (Green, 2004). Cabe señalar que el modelo LEED® de Canadá es el único método actual que incluye el diseño durable de los edificios, considerando desde la afectación de la humedad y lluvia, la afectación de los edificios por radiación solar hasta la afectación al edificio por

cuestiones de sismos, plagas y vandalismo. Por tal motivo, se hace referencia a dicha norma.

Tabla 4
Vida útil del diseño (VUD) de los edificios y sus componentes constructivos, según sus condiciones de accesibilidad al mantenimiento (en años)

Plazos de durabilidad de la edifica- ción	Vida útil, va- luada en años, del diseño de un edificio comple- to (VDEC)	Vida útil del diseño de componentes constructivos (VDCC) para condiciones eco- nómicas y técni- cas accesibles de mantenimiento (años)	Vida útil del diseño de componentes cons- tructivos (VDCC) para condiciones económicas y técnicas modera- damente accesibles de mantenimiento (años)	Vida útil de diseño de componentes constructivos para condiciones eco- nómicas y técnicas inaccesibles de mantenimiento (años)
Corto	1 - 15	1-3	3-10	10-15
Normal	50-100	3-6	25-50	50-100
Largo	Mayor a 100	6-10	50-100	Mayor a 100

Fuente: Australian, 2006.

Tabla 5
Vida útil del diseño (VUD) de un edificio
y sus componentes, según el tipo de componentes
constructivos (en años)

Vida útil, valuada en años, del diseño de un edificio completo (VDEC)	Elementos estructu- rales y/o elementos inaccesi- bles	Elementos caros o de difícil reemplaza- miento	Mayor y razona- blemente reemplaza- bles	Elementos de subsistemas de instalaciones espe- ciales, mecánicas, eléctricas, hidráu- licas, sanitarias, gas, aire y energía	Techumbres	Obra exterior
150	150	100	40	20	20	30
100	100	100	40	20	20	30
60	60	60	40	20	20	30

Fuente: Whole, 2012.

La siguiente información (Tabla 6) también puede ser de gran utilidad durante la etapa 2 del procedimiento, ya que nos puede guiar en la determinación de una vida útil de diseño por componente respecto a categorías de periodos de tiempo.

Tabla 6
Vida útil de diseño (VUD) por categoría
o tipos de edificios

Categoría de edificios	Vida útil de diseño por categoría (años)	Ejemplos
Temporales o de vida	Hasta 10-15	Construcciones no permanentes: edi-
corta		ficios provisionales, oficinas de ventas,
		edificios de exhibición temporal.
Vida media	25-49	La mayoría de los edificios industriales
		y de las estructuras para estaciona-
		mientos.
Vida larga	50-99	La mayoría de los edificios residencia-
		les, de comercio, de oficinas, de salud,
		de educación, así como estaciona-
		mientos construidos debajo de los de
		esta categoría (vida larga).
Permanentes	Más de 100	Edificios monumentales y/o de tipo
		patrimonial: museos, galerías de arte,
		archivos generales, etcétera.

Fuente: Canadian, 2001.

Se considera que las tablas 4, 5 y 6 pueden ser de gran ayuda para la determinación de la vida útil de diseño, siempre y cuando se respete el uso que se le pretende dar al edificio y se cubran los requerimientos de diseño y rendimiento del inmueble a construir.

Si se requiere específicamente conocer la expectativa de vida útil para un determinado material o componente constructivo, lo que se necesita hacer es conseguir esa información en fichas técnicas y/o en manuales técnicos que los fabricantes y proveedores deben ofrecer de sus productos. Si los fabricantes, por irresponsabilidad, no presentan este dato en las fichas técnicas de sus productos, una forma de obtener la vida útil de algún material o componente es mediante pruebas de envejecimiento en laboratorio para aproximarnos a una vida de diseño.

Otra forma es por la experiencia en la comparativa con otros materiales y/o componentes constructivos empleados en procesos constructivos similares; aunque no es lo recomendable cuando se requiere de cálculos exactos, puede ser pertinente para obtener estimaciones aproximadas.

Cómo determinar e identificar los factores que afectan la durabilidad de un proyecto

Para determinar estos factores, es necesario basarse en el método por factores de la norma ISO 15686. A continuación se presentan siete puntos, los cuales son factores que afectan la durabilidad y provocan la degradación del inmueble:

- 1. Calidad de los materiales y componentes de construcción.
- 2. El nivel o grado del diseño arquitectónico, constructivo y de sus instalaciones.
- La calidad y nivel de la mano de obra durante la ejecución de los procesos e instalación bajo sus correspondientes normas técnicas y reglamentos de construcción.
- 4. El medio ambiente del interior del edificio: humedad, temperatura, diversos agentes químicos y físicos.
- 5. El medio ambiente externo al edificio, como el clima y la contaminación urbana.
- Uso del edificio, basándose en manuales con especificaciones puntuales, realizadas por los diseñadores y constructores de los mismos, que implican una mejor operabilidad del inmueble.

7. Grado o nivel de conservación de acuerdo con las especificaciones asentadas en el manual de mantenimiento realizado por los diseñadores y constructores del inmueble, además de los productores o fabricantes de materiales y componentes usados en la construcción.

Estimación de la vida útil de la tenso-estructura

Usando el método por factores, que permite calcular la vida útil estimada (VUE) mediante la corrección de la vida útil de diseño (VUD) o de referencia, a través de la multiplicación de los valores de los factores en un rango de 0.8, 1.0 y 1.2 (del método ISO 15686), utilizando la fórmula:

$$VUE = VUD(A)(B)(C)(D)(E)(F)(G)(1)$$

Donde VUE es la vida útil estimada, VUD es la vida útil de diseño y desde A hasta G son los factores que inciden en la vida útil del componente constructivo. Teniendo todos los factores, se determinan los valores para cada uno, según el proyecto (Tabla 7), que para este caso es la tenso-estructura.

Tabla 7
Factores para la estimación de la vida útil
de la tenso-estructura

Factores	Valores asignados
Calidad de los materiales y componentes de construcción.	1.0
El nivel o grado del diseño arquitectónico, constructivo y de sus instalaciones.	1.20
La calidad y nivel de la mano de obra en la ejecución de los pro-	1.2
cesos de construcción e instalación bajo sus correspondientes	
normas técnicas y reglamentos de construcción.	
El medio ambiente del interior del edificio: humedad, temperatu-	0.8
ra, diversos agentes químicos y físicos existentes.	
El medio ambiente externo al edificio, como el clima y la conta-	0.8
minación urbana.	

Continúa...

Factores	Valores asignados
Uso del edificio, basándose en manuales con especificaciones puntuales, realizadas por los diseñadores y constructores de los mismos que implican una mejor operabilidad del inmueble.	1.0
Grado o nivel de conservación de acuerdo con las especifica-	1.0
ciones asentadas en el manual de mantenimiento realizado por	
los diseñadores y constructores del inmueble, además de los	
productores o fabricantes de materiales y componentes usados	
en la construcción.	

Fuente: Elaboración propia.

Los valores asignados corresponden a la ponderación que el proyectista hace, fundamentada desde su experiencia al momento de estimar la vida útil del proyecto basado en referencias de vida útil, como ya se ha explicado en la sección metodológica, tanto del capítulo 2 como del capítulo 3. Por favor, siempre procure revisar dichas secciones metodológicas.

Se sustituyen los valores en la fórmula (1):

ESL = 13.82

Es posible observar cómo la estimación de la vida útil, según la norma técnica ISO 15686 del edificio en cuestión, disminuyó ligeramente respecto a la vida útil de diseño o de referencia (de 15 años a 13.82). Lo anterior se debe principalmente a los factores del medio ambiente, específicamente por la humedad, radiación y algunas sustancias tóxicas en la atmósfera (por estar ubicado el proyecto en una ciudad industrial). Algo así no se considera propicio para los elementos de construcción (principalmente para la membrana), sin llegar a ser un ambiente excesivamente agresivo como otros lugares ubicados en costas, expuestos a altas cantidades de humedad y brisas marinas.

A continuación se proponen distintas estrategias de diseño por durabilidad para solventar estos problemas de degradación de los componentes e igualar, al menos, la vida útil estimada con la vida útil de diseño.

Degradación por agua y humedades:

- Desviar el agua de los sistemas de anclaje.
- Drenar apropiadamente el agua del sistema de techumbre (membrana).
- Usar aislantes y retardadores de vapor en piezas expuestas a alta humedad, como conexiones y cables.
- Evitar escurrimientos de la membrana hacia los mástiles y cables.
- Cubrir las partes metálicas con selladores, acabados de pintura anticorrosiva y altamente impermeable.

Degradación por radiación ultravioleta:

 Instalar materiales con propiedades que controlen su degradación por efectos del sol y para cambios bruscos de temperatura o por dilatación.

Por corrosión:

 Aplicar tratamientos especiales, tanto en la membrana polimérica como en la estructura metálica.

Por desastres naturales:

- Sismos: es indispensable apegarse al reglamento de construcción local para cálculo de estructuras por sismo.
- Vientos fuertes: es indispensable apegarse al reglamento de construcción local para cálculo de estructuras por viento.

- Inundaciones: revisar los planes de desarrollo urbano del lugar para evitar la construcción sobre terrenos con riesgo de inundación.
- Riesgo por fallas geológicas: revisar los planes de desarrollo urbano del lugar para evitar la construcción sobre terrenos en riesgo de falla geológica, también es importante realizar, en la medida de lo posible, las pruebas geológicas necesarias para ser consideradas en el cálculo estructural.
- Incendios: construir barreras antiincendios en zonas de riesgo nunca resulta excesivo, así como desarrollar un manual contra incendios y de operación en caso de incendios para las edificaciones en cuestión.

Por último, se define el plan de mantenimiento (Tabla 8), donde también se registrará la programación de reparación y reemplazo de los componentes constructivos para el caso específico del ejemplo

Tabla 8 Ejemplo de un formato propuesto para el desarrollo del plan de mantenimiento para la tenso-estructura

Componente constructivo	VUD (años)	Subsistema del edificio al que pertenece	Manteni- miento	Repara- ciones	Reempla- zos
Membrana	10-15	Cubierta	Requiere inspección cada seis meses, principalmente en las partes que unen con las conexiones, las cuales pueden sufrir desgarre y elongación. Requiere limpieza semanal.	Reparaciones mínimas cada cinco años, sobre todo en uniones.	Cada 10-15 años, depen- diendo del grado de man- tenimiento.

Continúa...

Componente constructivo	VUD (años)	Subsistema del edificio al que pertenece	Manteni- miento	Repara- ciones	Reempla- zos
Estructura: mástiles, conexiones y cables.	15+	Estructura	Requiere inspección semestral. Ajuste semestral de accesorios como tensión en cables, abrazaderas, sujeta-cables, tensores o grilletes. Requiere pintura anticorrosiva cada cinco años.	No requiere	Del cable, solamente si la tensión fue la incorrecta. De accesorios, solamente si salieron defectuosos.

Fuente: Elaboración propia.

En resumen, se considera que la estimación de vida útil para el caso ejemplificado es aceptable, es decir, no se alejó demasiado de la vida útil de referencia; por tanto, es posible alcanzar la vida útil de diseño si se aplican las estrategias de diseño por durabilidad anteriormente mencionadas. Cuando la vida útil estimada no iguale o supere la vida útil de diseño, se considera muy conveniente rediseñar el proyecto, atendiendo los puntos de mayor degradación de los componentes constructivos.

Conclusión

Durante el proceso de diseño arquitectónico, es importante y necesario integrar la planeación de la vida útil del proyecto, incluyendo sus componentes, para reconocer las necesidades del proyecto en materia de durabilidad y mantenimiento futuro. El método propuesto en este documento puede ser de utilidad, no solamente para la etapa de diseño arqui-

tectónico, sino también para las subsecuentes etapas del ciclo de vida del proyecto, es decir, la fase de construcción, posteriormente la de uso, operación y mantenimiento del inmueble.

El método propuesto tiene como aportación tres estudios básicos que pueden fungir como herramientas de diseño. El primero se basa en la estimación de la vida útil del proyecto, prevé cuánto va a durar aproximadamente el inmueble y nos brinda un dato confiable del edificio en proyección. El segundo genera un plan de durabilidad con base en estrategias de diseño y construcción del inmueble, lo cual mejora y prolonga la vida útil del edificio.

Finalmente, se genera un plan de mantenimiento para acercarnos o aproximarnos a las actividades que debemos realizar en el edificio y lograr mantenerlo en vida útil, planificando actividades de mantenimiento preventivo, correctivo, reparaciones y reemplazos. Todo lo mencionado es ideal para formar un proyecto integral más duradero, proporciona un mayor rendimiento estético y funcional respecto a lo diseñado y edificado.

Capítulo 4 Introducción a la estimación de vida útil y plan de durabilidad para el ejemplo de una casa habitación

Por lo general, la casa habitación es el proyecto que más se trabaja en los despachos de arquitectura en México. Este capítulo puede resultar muy práctico para que el proyectista conozca los criterios que se siguen para determinar la vida útil de un proyecto; asimismo, saber qué aspectos deben considerarse para el diseño por durabilidad en cualquier proyecto arquitectónico.

Metodología para estimación de vida útil en proyectos arquitectónicos

La metodología propuesta para la estimación de la vida útil de los edificios y estructuras consiste en los siguientes puntos y es la misma que se c onsideró en el capítulo 3 (véase Metodología de la norma ISO 15686):

- 1. Identificar las condiciones generales de servicio, tipo de edificio, requerimientos funcionales y rendimiento del edificio o de la estructura en este caso.
- 2. Determinación de la vida útil de diseño del inmueble y sus componentes.

- 3. Determinar e identificar los factores que afectan a la durabilidad del proyecto.
- 4. Estimación de la vida útil del edificio y de sus componentes constructivos.
- 5. Plan de diseño por durabilidad del proyecto.

Caso práctico basado en la metodología propuesta

A continuación se presenta un caso práctico (Tabla 9), basado en la metodología propuesta durante el capítulo 3. Contiene principalmente la vida útil de diseño para el edificio y sus partes, la vida útil estimada según las condiciones y los factores que afectan su durabilidad y, finalmente, un plan de diseño por durabilidad para el proyecto con el fin de mejorar su vida útil estimada.

Tabla 9

Reporte del plan de durabilidad de un proyecto típico de vivienda unifamiliar
Descripción, datos y condiciones generales de servicio del proyecto
1. Nombre del proyecto: vivienda tipo unifamiliar

- 2. Localización: Pachuca, Hidalgo, México
- 3. Uso que tendrá el edificio: vivienda
- 4. Proyectista: Silverio Hernández Moreno
- 5. Fecha: enero 2014
- 6. Norma técnica a emplear: ISO 15686
- 7. Descripción general de la accesibilidad al mantenimiento de los componentes del edificio
- 7.1. Tipo de estructura: concreto armado (sin accesibilidad al mantenimiento).
- 7.2. Tipo de envolvente: mampostería de tabique rojo recocido (fácil accesibilidad al mantenimiento).
- 7.3. Tipo de instalaciones: hidráulica, sanitaria, gas, eléctrica, alarma sonora, cable e Internet (mediana accesibilidad al mantenimiento).
- 7.4. Tipo de interiores: cerámicos, laminados y azulejos (fácil accesibilidad al mantenimiento).

- 7.5. Tipo de albañilería y acabados: aplanados de mortero cemento-arena y cal-arena, acabados con pintura vinílica, cerámicos, laminados y azulejos (fácil accesibilidad al mantenimiento). Por otro lado, la albañilería tendría una mediana accesibilidad al mantenimiento.
- 7.6. Tipo de obra exterior: aplanados con cemento y arena, pintura vinílica para exteriores, aluminio, acero inoxidable y herrería (fácil accesibilidad al mantenimiento).

Determinación de la vida útil de diseño	Vida útil (v∪)
1. Vida útil de diseño del edificio completo	60
2. Vida útil de diseño por subsistema del edificio	,
2.1. Estructura	60
2.2. Envolvente	40
2.3. Interiores	30
2.4. Instalaciones	15
2.5. Acabados	15
2.6. Obra exterior	30
3. Vida útil de diseño por componente constructivo	
3.1. Estructura	60
3.1.1. Cimentación	60
3.1.2. Columnas	60
3.1.3. Vigas	60
3.1.4. Trabes	60
3.1.5. Losas de entrepiso	60
3.2. Envolvente	50
3.2.1. Muros	50
3.2.2. Techos	50
3.2.3. Ventanas exteriores	15
3.2.4. Puertas exteriores	25
3.2.5. Domos	10
3.2.6. Celosías	10
3.3. Interiores	20
3.3.1. Muros divisorios	40
3.3.2. Ventanas	20
3.3.3. Puertas	30
3.3.4. Falsos plafones	10
3.3.5. Canceles	10

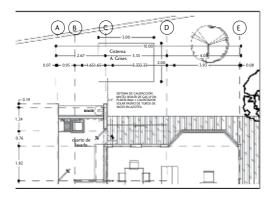
7 4 1			
3.4. Instalaciones	Hidráulica		
Tinacos	Tinaco de plástico PVC para agua potable.	35	
Tinacos	Tinaco de plástico de fibra de vidrio para agua potable.	40	
Tuberías y accesorios	De cobre.	80	
	Tubería y accesorios instalados.	35	
Tuberías y accesorios	De acero inoxidable (sistema instalado).	30	
Tuberías y accesorios	De acero galvanizado (sistema instalado).	30	
Tuberías y accesorios	De hierro dúctil (sistema instalado).	15	
Tuberías y accesorios	De poliuretano.	15	
Bomba de agua	Doméstica.	10	
Válvulas	De cobre.	20	
Válvulas	De hierro colado.	15	
Válvulas	De acero inoxidable.	20	
Boilers o calentadores	De acero inoxidable para uso doméstico.	10	
de agua de gas.			
Sistema de captación	Incluye membrana impermeable de polímero con cana-	25	
de agua de lluvia	lones y bajadas de PVC para el agua.		
	Sanitaria		
Tubos de ventilación	Tubo de PVC.	100	
y respiraderos	Tubería instalada con accesorios.		
Tuberías	Los ramales en tuberías de plástico: polietileno (PET),	10	
	cloruro de polivinil (PVC) o estireno de acrilo-nitrilo		
	butadieno (ABS).		
	Tubería instalada con accesorios.	15	
Drenaje y desagüe de	Tubería de PVC.	100	
aguas negras incluye	Tubería instalada con accesorios.	15	
trampas antisifón			
Ductos para tuberías	Ducto de aglomerado de madera de mediana densidad	30	
sanitarias	(para uso en condiciones secas) tipo triplay®, o MDF		
	terminado con pintura alquidálica, acrílica o esmalte de		
	poliuretano (PUR).		
Eléctrica			
Cable (para baja ten-	Incluye conductor de cobre y aislante gemelo de PVC o	35	
sión)	algún termo-plástico.		
Medidores	Con dispositivo de protector de circuitos.	25	
Sockets	Plásticos con partes metálicas.	25	
Interruptores	Metálicos con partes plásticas.	25	

		1
Tableros de control	Metálicos con partes plásticas.	25
Motores eléctricos	Eléctrico: construido de aluminio, hierro o acero.	15
Plantas generadoras de	De diésel.	20
energía		
Plantas generadoras de	Alternadores.	25
energía		
Plantas generadoras de	Baterías para arrancadores.	10
energía		
Apagadores para lu-	De dos vías con componentes plásticos y metálicos.	25
minarias		
Luminarias de bajo	Luminarias fluorescentes con cubierta y cuerpo de acero	Sist.
consumo energético	dulce; reflector de aluminio con un rango promedio de	15
	duración del tubo fluorescente entre 8,000 y 10,000	Tubo:
	horas.	(3)
Luminarias de bajo	De alta intensidad de descarga (HID), de sodio o mercurio	Sist.:
consumo energético	a alta presión, con un rango promedio de duración de	20
	14,000 a 28,000 horas.	
Sistema contra incen-	Sistema de cableado contra incendios. Con sensores	20
dios	y detectores de humo y calor alimentados por red	
	eléctrica.	20
	Los sensores están protegidos con un dispositivo que	
	los mantienen libres de polvo y humedad.	
Sistema contra incen-	Aspersores (sprinklers) en condiciones húmedas.	20
dios		
Sistema contra incen-	Aspersores (sprinklers) en condiciones secas.	40
dios		
	Gas	
Tubería y accesorios	De cobre.	15
	Aire acondicionado y calefacción	
Radiadores-calefac-	Radiadores instalados en muros.	20
tores		
Sistema radiante o de	Válvulas del termostato.	15
radiador		
Ductos del aire acon-	De aluminio.	35
dicionado		
Ductos del aire acon-	De acero inoxidable.	30
dicionado		
	•	

Ductos del aire acon-	De tablero de vermiculita.	35
dicionado		
Ductos del aire acon-	De tablero de silicato de calcio.	35
dicionado		
Filtros de aire	Aleaciones a base de aluminio.	25
(marco)		
Filtros de aire	De acero dulce formado en frío.	20
(marco)		
Filtros de aire	Filtro intercambiable.	1-3
Unidad central de	Eléctrico.	20
calor		
Unidad central de en-	Eléctrico.	20
friamiento		
(chillers)		
Unidad central de en-	Compresores de vapor.	10
friamiento		
(chillers)		
Unidad central de en-	Ventiladores centrífugos y combinados.	15
friamiento		
(chillers)		
Motores para sistemas	Eléctrico (construido con aluminio, hierro o acero).	15
de HVAC		
Termostato	Manual	20
	Inteligente	15
Tuberías	De plástico, ya sea polietileno (PET), cloruro de polivinil	80
	(PVC) o estireno de acrilonitrilo butadieno (ABS).	
	Sistema instalado.	25
	Sistema contra incendio	
Sistema contra incen-	Sistema cableado contra incendios. Con sensores	20
dios	y detectores de humo y calor, alimentados por red	
	eléctrica.	
	Los sensores están protegidos con un dispositivo que	
	los mantienen libres de polvo y humedad.	
Sistema contra incen-	Aspersores (sprinklers) en condiciones húmedas	20
dios	,	

Sistema contra-incen-	Aspersores (sprinklers) en condiciones secas	40
dios.		
	Otras especiales	
Elevadores y monta-	Elevadores y montacargas	20
cargas	, G	
Arreglo fotovoltaico	Paneles fotovoltaicos de silicio, conductores de cobre	15
0	aislado con termoplásticos, baterías y convertidores.	
3.5. Albañilería y acaba	,	
	En techos	
Estructura de techos y	Losa plana y/o reticular de concreto armado.	100
entrepisos		100
Estructura de techos y	Losa de estructura metálica tipo losacero® de acero dulce	100
entrepisos	post-galvanizado, con capa de compresión de concreto	
F	armado con malla electro-soldada.	
Estructura de techos y	Losa y techos prefabricados con concreto simple, en	60
entrepisos	forma de vigueta y bovedilla con capa de compresión de	
	5 cm, reforzada con malla metálica.	
Estructura de techos y	Losa o techo catalán a base de vigas de madera estruc-	40
entrepisos	tural y teja.	
Acabados en techos y	Impermeabilizante de polímero en rollo para techos, con	7
cubiertas	acabados diversos de membranas de poliéster, asfalto,	
	arena silica o de polietileno.	
Acabados en techos y	Enladrillado con petatillo de arcilla cocida a media-	25
cubiertas	nas y bajas temperaturas, asentado con mortero de	
	cemento arena 1:4 y conglomerada con lechada	
	de cemento Portland-gris.	
Acabados en techos y	Impermeabilizante de pintura de acrílico a dos capas.	3
cubiertas		
Acabados en techos y	Teja de barro sinterizada a medianas temperaturas,	40
cubiertas	asentadas sobre firme de concreto previamente	
	impermeable.	
Acabados en techos y	Azulejos y mosaicos de concreto de 9.5 mm de espesor.	40
cubiertas		
Acabados en techos y	Teja de polímero de polipropileno, de mediana y alta	35
cubiertas	resistencia al vapor de agua.	
Falsos plafones (cielos	Tablero de yeso de 12.5 mm de espesor, acabado con	40
en techos)	pasta y pintura para interiores en ambos lados; previa-	
	mente tapadas las juntas.	

media densidad. Texturizado y diseñado para áreas no húmedas o secas. Acabado en pisos al interior semento-arena como sub-base. Acabado en pisos al interior semento protanda e se sub policior de vinilo (PVC flexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior semento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al interior semento se madera dura. Interior semento prisos de madera dura. Interior semento se madera laminada. Interior semento se muros de mampostería de tabique, tabicón, piedra, etc. Muros de carga de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. De mezclas de cemento Portland-arena y gravilla de 60 De mezclas de cemento Portland-arena y gravilla de 60				
estructura de techo y el falso plafón. En pisos Acabado en pisos al interior media densidad. Texturizado y diseñado para áreas no húmedas o secas. Acabado en pisos al interior substitución de cemento-arena como sub-base. Acabado en pisos al interior substitución de cemento-arena como sub-base. Acabado en pisos al interior substitución de cemento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al interior asentados con mortero cemento-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al interior asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al pisos de madera dura. Acabado en pisos al interior substitución pisos de madera laminada. En muros Muros de carga de De arcilla sinterizada a medianas temperaturas, asentado con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin 15 mampostería de tabique, tabicón, piedra, etc. Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. De arcilla sinterizada a altas temperaturas Bo piedra natural Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	Aislamiento térmico en	Con fibra de vidrio de densidad media (75 kg/m³) en 2		
Acabado en pisos al interior superior de comento per la pisos de aglomerado de maderas tipo I del tablero de media densidad. Texturizado y diseñado para áreas no húmedas o secas. Acabado en pisos al interior superior de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior superior de sepesor. Acabado en pisos al interior superior s	techos	capas de 100 mm con valor U de 0.25 W/m²/K entre la		
Acabado en pisos al interior media densidad. Texturizado y diseñado para áreas no húmedas o secas. Acabado en pisos al fiexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al fiexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al fiexible provincia de vinilo (PVC flexible), sobre firme de concreto con acabado pulido de cemento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al fiexible prisos de madera dura. Interior fiexible prisos		estructura de techo y el falso plafón.		
media densidad. Texturizado y diseñado para áreas no húmedas o secas. Acabado en pisos al interior lexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior lexible por la cemento Portland-arena sobre firme de concreto con S0-75 mm de espesor. Acabado en pisos al interior lexible por la cemento Portland-arena sobre firme de concreto con S0-75 mm de espesor. Acabado en pisos al interior lexible por la cemento Portland-arena sobre firme de concreto simple. Acabado en pisos al interior lexible por la cemento lexible por la concreto simple. Acabado en pisos al interior lexible por la cemento lexible p		En pisos		
húmedas o secas. Acabado en pisos al fiexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior solvante de concreto con acabado pulido de cemento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al Azulejos y mosaicos de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior solvante de concreto simple. Acabado en pisos al pisos de madera dura. Interior solvante de carga de con juntas de mortero cemento-arena. Juntas en muros de mampostería de tabique, tabicón, piedra, etc. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de tab de carga de cerámica estructural Muros de carga de tab De mezclas de cemento Portland-arena y gravilla de 60 De mezclas de cemento Portland-arena y gravilla de 60	Acabado en pisos al	Pisos de aglomerado de maderas tipo I del tablero de	30	
Acabado en pisos al interior sol flexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior sol flexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior sol forma de espesor. Acabado en pisos al interior sol firme de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior sol firme de concreto simple. Acabado en pisos al interior sol firme de concreto simple. Acabado en pisos al pisos de madera dura. Interior sol firme de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al pisos de madera dura. Interior sol firme de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena asobre firme de concreto simple. Be pisos de madera dura. Interior sol firme de concreto sol firme de concreto simple. En muros En muros Buros de carga de puntas de mortero cemento-arena (sin protección o sin puntas de mortero cemento-arena (sin protección o sin protección, piedra, etc. Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. De arcilla sinterizada a altas temperaturas 80 De arcilla sinterizada a altas temperaturas 80 De mezclas de cemento Portland-arena y gravilla de 60	interior	media densidad. Texturizado y diseñado para áreas no		
flexible), sobre firme de concreto con acabado pulido de cemento-arena como sub-base. Acabado en pisos al interior En muros Muros de carga de tabique, tabicón, piedra, etc. Muros de concreto integrado en polvo) de comento-arena (sin protección o sin recubrimiento). 15 muros Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de ca		medas o secas.		
cemento-arena como sub-base. Acabado en pisos al interior So-75 mm de espesor. Acabado en pisos al Azulejos y mosaicos de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior So-75 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior Pisos de madera laminada. Acabado en pisos al interior So-75 mente de concreto de 9.5 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior So-75 mente espesor, asentado en pisos al interior So-75 mente espesor. Acabado en pisos al interior So-75 mente espesor, asentado en pisos al interior So-75 mente espesor. En muros So-75 mente espesor. Acabado en pisos al interior So-75 mente espesor, asentado en concreto arena sobre firme de concreto asentados. So-75 mente espesor. 40 80 80 En muros En muros En muros Muros de carga de de da mortero cemento-arena (sin protección o sin recubrimiento). 15 15 16 17 18 19 100 100 100 100 100 100	Acabado en pisos al	Piso de cubierta de mosaicos de policloruro de vinilo (PVC	40	
Acabado en pisos al interior SO-75 mm de espesor. Acabado en pisos al cemento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al interior Acabado en pisos al interior SO-75 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior SO-75 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior SO-75 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior SO-75 mm de espesor, asentados con mortero cemento-arena sobre firme de concreto interior SO-75 mm de espesor, asentados con mortero cemento-arena asentado sinterior SO-75 mm de espesor, asentados con interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados asentados en pisos al interior SO-75 mm de espesor, asentados espesor, asentados en pisos al interior SO-75 mm de espesor, asentados espesor,	interior	flexible), sobre firme de concreto con acabado pulido de		
cemento Portland-arena sobre firme de concreto con 50-75 mm de espesor. Acabado en pisos al asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior Acabado en pisos al pisos de madera dura. Acabado en pisos al interior Acabado en pisos al pe alfombras. En muros Muros de carga de tabique con juntas de mortero cemento-arena (sin protección o sin recubrimiento). Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de piedra natural Muros de carga de cerámica estructural Muros de carga de carga de cerámica estructural Muros de carga de concreto armado altas temperaturas ando con juntas de mortero cemento-arena. De arcilla sinterizada a medianas temperaturas, asentado con juntas de mortero cemento-arena (sin protección o sin recubrimiento).		cemento-arena como sub-base.		
Acabado en pisos al asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior Acabado en pisos al pisos de madera dura. Acabado en pisos al pisos de madera laminada. Acabado en pisos al pisos de madera laminada. Be alfombras. En muros En muros Muros de carga de tabique, tabicón, piedra, etc. Muros de concreto de piedra natural Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, tabicón, piedra natural Muros de carga de cerámica estructural Muros de carga de tabole piedra natural Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	Acabado en pisos al	Acabado pulido (con color integrado en polvo) de	80	
Acabado en pisos al interior asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior Pisos de madera dura. Acabado en pisos al interior De alfombras. En muros Muros de carga de tabique, tabicón, piedra, etc. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de piedra natural Muros de carga de Carga de Piedra natural de granito, pizarra, arenisca o caliza. De mezclas de cemento Portland-arena y gravilla de 60 De mezclas de cemento Portland-arena y gravilla de 60	interior	cemento Portland-arena sobre firme de concreto con		
interior asentados con mortero cemento-arena sobre firme de concreto simple. Acabado en pisos al interior Acabado en pisos al interior Acabado en pisos al interior De alfombras. En muros En muros Muros de carga de tabique, tabicón, piedra, etc. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de piedra natural Muros de carga de ca		50-75 mm de espesor.		
concreto simple. Acabado en pisos al interior De alfombras. En muros En muros Muros de carga de tabique, tabicón, piedra, etc. Muros de concreto armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de carga de cerámica estructural Muros de carga de tabique, piedra natural Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. De mezclas de cemento Portland-arena y gravilla de 60	Acabado en pisos al	Azulejos y mosaicos de concreto de 9.5 mm de espesor,	40	
Acabado en pisos al interior Acabado en pisos al pisos de madera laminada. Acabado en pisos al interior Acabado en pisos al interior Ben muros En muros Muros de carga de con juntas de mortero cemento-arena. Juntas en muros de mortero cemento-arena (sin protección o sin recubrimiento). Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de cerámica estructural Muros de carga de La De mezclas de cemento Portland-arena y gravilla de 60	interior	asentados con mortero cemento-arena sobre firme de		
interior Acabado en pisos al interior Acabado en pisos al interior Buros En muros En muros Muros de carga de tabique con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin recubrimiento). Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique piedra natural Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60		concreto simple.		
Acabado en pisos al interior Acabado en pisos al interior En muros Muros de carga de tabique con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin recubrimiento). Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabole piedra natural Muros de carga de Cerámica estructural Muros de carga de tabole piedra natural Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	Acabado en pisos al	Pisos de madera dura.	60	
interior Acabado en pisos al interior En muros Muros de carga de tabique con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin recubrimiento). Huros de concreto véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique estructura del edificio en concreto armado. De arcilla sinterizada a altas temperaturas 80 Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	interior			
Acabado en pisos al interior En muros Muros de carga de tabique Juntas en muros de mortero cemento-arena. Juntas en muros de mortero cemento-arena (sin protección o sin recubrimiento). tabicón, piedra, etc. Muros de concreto véase estructura del edificio en concreto armado. Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, piedra natural De mezclas de cemento Portland-arena y gravilla de 60	Acabado en pisos al	Pisos de madera laminada.	30	
interior En muros Muros de carga de tabique Juntas en muros de Juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin recubrimiento). tabicón, piedra, etc. Muros de concreto Véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, recubrimiento). 100 100 100 100 100 100 100 1	interior			
En muros Muros de carga de tabique con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin recubrimiento). Muros de concreto Véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, recubrimiento). 100 80 100 100 100 100 100 100	Acabado en pisos al	De alfombras.	5	
Muros de carga de tabique con juntas de mortero cemento-arena. Juntas en muros de mampostería de tabique, tabicón, piedra, etc. Muros de concreto armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, tabicón, piedra natural De mezclas de cemento Portland-arena y gravilla de 60	interior			
tabique con juntas de mortero cemento-arena. Juntas en muros de Juntas de mortero cemento-arena (sin protección o sin 15 mampostería de tabique, recubrimiento). Muros de concreto Véase estructura del edificio en concreto armado. Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de tabique, recubrimiento). 100 armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. 100 piedra natural Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60		En muros		
Juntas en muros de mampostería de tabique, tabicón, piedra, etc. Muros de concreto Véase estructura del edificio en concreto armado. Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	Muros de carga de	De arcilla sinterizada a medianas temperaturas, asentado	60	
mampostería de tabique, tabicón, piedra, etc. Muros de concreto Véase estructura del edificio en concreto armado. Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	tabique	con juntas de mortero cemento-arena.		
tabicón, piedra, etc. Muros de concreto armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. Muros de carga de cerámica estructural De mezclas de cemento Portland-arena y gravilla de 60	Juntas en muros de	Juntas de mortero cemento-arena (sin protección o sin	15	
Muros de concreto Véase estructura del edificio en concreto armado. 100 armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. 100 piedra natural Muros de carga de cerámica estructural Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	mampostería de tabique,	recubrimiento).		
armado Muros de carga de Piedra natural de granito, pizarra, arenisca o caliza. 100 piedra natural Muros de carga de ce- rámica estructural Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	tabicón, piedra, etc.			
Muros de carga de piedra natural de granito, pizarra, arenisca o caliza. 100 piedra natural Muros de carga de cerámica estructural Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	Muros de concreto	Véase estructura del edificio en concreto armado.	100	
piedra natural Muros de carga de cerámica estructural Muros de carga de ta- De arcilla sinterizada a altas temperaturas 80 Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	armado			
Muros de carga de ce- rámica estructural De arcilla sinterizada a altas temperaturas 80 Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	Muros de carga de	Piedra natural de granito, pizarra, arenisca o caliza.	100	
rámica estructural Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	piedra natural			
Muros de carga de ta- De mezclas de cemento Portland-arena y gravilla de 60	Muros de carga de ce-	De arcilla sinterizada a altas temperaturas	80	
	rámica estructural			
	Muros de carga de ta-	De mezclas de cemento Portland-arena y gravilla de	60	
bicón de hormigón alta densidad.	bicón de hormigón	alta densidad.		


Membranas impermeables en muros Polímero de polietileno (PET) y otros compuestos plásticos que pueden incluir poliéster, así como otras fibras sintéticas u otros aditivos.	80
sintéticas u otros aditivos.	
Aislamiento impermea- Tipo rígido (laminado) de espuma de poliuretano PUR,	80
ble y térmico en muros valor: U= 35 W/m²/K.	
Muros divisorios Tablero de yeso de 12.5 mm de espesor, acabado con	30
pasta y pintura para interiores en ambos lados.	
Muros divisorios Tablero de madera (en interiores).	40
Muros divisorios Tablero de mortero, cemento-arena.	50
Muros divisorios Bloques huecos de concreto, cemento-arena-gravilla.	50
Muros divisorios Bloques huecos de mortero, cal-arena-puzolanas naturales.	40
Muros divisorios De arcilla sin sinterizar (adobe), comprimidos y secados al sol.	30
Muros divisorios Bloques huecos de cerámica de alta temperatura.	80
Muros divisorios Paneles de emparedado de malla metálica, mortero	40
cemento-arena (F'c=100 kg/cm²) y placa interior de	
poliestireno como aligerador, acabado con pintura vinílica	
para exteriores.	
Revestimiento en mu- De mortero cemento-arena.	15
ros exteriores	
Revestimiento en mu- De yeso a una capa de 12 mm de espesor mínimo en	60
ros interiores muros internos de mampostería.	
Revestimiento en mu- De mortero cal y arena para interiores.	40
ros en interiores	
Revestimiento en mu- Azulejos y mosaicos de cerámica de alta resistencia de un	80
ros interiores mínimo de 4 mm de espesor, asentados con adhesivo o	
mortero de alta resistencia a la humedad y a la contrac-	
ción sobre superficie firme y seca. Especialmente para	
acabados en zonas húmedas como baños y cocinas.	
Revestimiento en mu- De placas de acero pregalvanizado (275 g/m²) para	80
ros para exteriores fachadas.	
Pintura al interior Pintura vinílica en interiores de muros (dos capas).	7
Pintura al exterior Pintura vinílica en exteriores de muros (dos capas).	5
3.6. Obra exterior	
Bardas	
De arcilla sinterizada a medianas temperaturas, asentado con juntas de mortero	40
cemento-arena.	

	Pavimentos			
Firmes de concreto	Resistencia = de:	80		
simple	F'c= 90-150 kg/cm ² .			
	Ante tráfico vehicular.	10		
Acabado en pisos al	Piso de concreto estampado.	80		
exterior	Ante tráfico vehicular.	15		
Acabado en pisos al	Pisos de cerámica de alta temperatura.	80		
exterior				
Acabado en pisos al	Pavimentos de concreto para tráfico pesado.	15		
exterior				
Acabado en pisos al	Pavimentos de concreto para tráfico ligero (banquetas	50		
exterior	y andadores).			
Acabado en pisos al	Pavimentos de concreto tipo "adoquín" para andadores	40		
exterior	con guarnición de concreto.			
Guarniciones				
De concreto simple				
De concreto armado		40		
Registros				
Registro de concreto				
Registro de mampostería de tabique rojo				
Postes de alumbrado		10		
Tiestos o jardineras		15		
Bancas de concreto				

Determinación de los factores relevantes que afectan la durabilidad del proyecto		
1. Descripción técnica de la calidad de los materiales y sus componentes constructivos.	1.0	
Se trata de una construcción tradicional de mampostería de tabique rojo recocido,		
confinado con estructura de cimientos, trabes, cadenas, castillos de concreto		
armado y como pisos, entrepisos de concreto reforzado con acero. Se resume		
en lo referente explicado a continuación.		
Mampostería. Por tratarse de tabique rojo recocido de la región, no se tiene un		
estricto control de calidad en las piezas, pero la muestra sometida a esfuerzos de		
prueba de laboratorio cumple con la resistencia a compresión simple requerida.		
Asimismo, por tratarse de muros confinados, las pruebas demostraron que cumple		
también con la resistencia al cortante en las pruebas del sistema.		

Concreto. El concreto usado para confinar los muros cumple con los requisitos mínimos solicitados por el reglamento de construcciones respectivo, ya que se usó premezclado por una empresa de concretos certificada en México. El mortero para juntas se hizo en sitio, cumpliendo con los valores recomendados por el reglamento de construcciones. El acero también cumplió con los requisitos señalados en el reglamento de construcciones y sus normas complementarias. El resto de los materiales, tanto acabados como instalaciones, son productos cuyo control de calidad es más vigilado y atendido. Suele basarse en fabricantes de productos nacionales que cumplen con las normas oficiales mexicanas y no representa un factor de riesgo sobre la calidad final de los materiales. En resumen, este factor de calidad de materiales se estimó para establecer un valor de 1. 0, el cual quiere decir que cumple con los requisitos mínimos y no influye directamente en la vida útil final del proyecto. 2. Descripción técnica general del nivel de diseño arquitectónico-constructivo 1.1 En términos generales, el proyecto trata de una casahabitación de dos niveles, diseñada conforme a las necesidades del cliente y del sitio. También se tomó en cuenta un diseño ambiental, considerando los siguientes rubros principales: diseño sustentable del sitio, agua, energía, materiales, desechos constructivos y confort al interior, cumpliendo con los puntos referidos en el Anexo 2 del presente libro. Por tanto, el valor dentro de la escala del 1.8 al 1.2 de la metodología planteada se estima, para este rubro, en 1.1, siendo un diseño que va más allá del promedio en su calidad. La Figura 12 muestra un detalle arquitectónico del proyecto en cuestión.

Figura 12
Detalle arquitectónico del proyecto en cuestión

3. Descripción de la calidad y nivel de la mano de obra.

1.1

La calidad de la mano de obra es de nivel 1.1. Se trata de un contratista local, pero debemos considerar que la mayoría de los maestros de obra en el estado de Hidalgo trabajan a muy buen nivel; en este punto estaremos siendo conservadores al otorgarles un valor de 1.1.

- -

4. Descripción cualitativa y cuantitativa de las condiciones ambientales internas al edificio.

1.1

En la ciudad de Pachuca, Hidalgo, el punto referente a temperatura y humedad interna está muy ligado al diseño bioclimático en los puntos de ventilación natural, eso estima que el proyecto se encuentra muy bien ventilado de forma natural y con orientaciones Oriente-Poniente, facilitando la ganancia de calor por ser un clima de templado a frío; asimismo, facilita la ventilación natural por el emplazamiento del edificio en el terreno. El uso de materiales de alta emisividad tóxica al interior es mínima, por tanto no se esperan agentes retenidos como COV (compuestos orgánicos volátiles) ni agentes biológicos retenidos por humedades. La ventilación natural se apega a los requisitos que marca la norma técnica ASHRAE 62.1-2010; la condensación también está en concordancia con la ISO 6270 e ISO 4628/2. El grado de corrosión y oxidación al interior está en concordancia con ISO 7253 e ISO 12944-2; por último y muy importante, la clase higrométrica de los espacios se encuentra en concordancia con ISO 13788, ISO 10545-8, ISO 10545-9: -11 y -12.

5. Descripción cualitativa y cuantitativa de las condiciones ambientales externas al edificio.

8.0

El clima en Pachuca se encuentra particularmente sin variaciones significativas de temperatura ni humedad, un promedio de 58%, siendo ligeramente elevada. Regularmente hay un clima templado donde la incidencia de la radiación solar se densifica, como consecuencia de la altitud de la ciudad (2426 msnm); debido a esta incidencia de la radiación solar, en algunos materiales prefabricados de concreto se han detectado ligeras contracciones causadas por los cambios de temperatura entre las 8 p.m. y las 2 a.m.

Debido a la humedad en el ambiente de Pachuca, la cual está por arriba del promedio confortable, se estima que puede haber problemas de acumulación de humedades en el edificio en partes no protegidas ni debidamente impermeabilizadas, además de una alta condensación a determinadas horas del día. El grado de exposición al viento y contaminantes de la atmósfera cumplen con las respectivas normas NOM y NMX, donde no se presentan concentraciones grandes de carbonatos, sulfatos, cloruros ni CO₂, principalmente; el tipo de suelo cumple con las normas mexicanas: NMX-AA-146-SCFI-2008; NMX-AA-022-1985.

Finalmente, el grado de corrosión y oxidación de materiales por humedad,	
condensación y radiación solar está en riesgo si la ejecución de los trabajos de	
construcción no se hace de manera adecuada.	
6. Descripción del uso y operabilidad que se espera en el edificio.	1.1
Las condiciones del uso que se esperan del inmueble (en este caso, la vivienda)	
son relativamente aceptables, se trata de una familia joven con hijos pequeños,	
por lo que se prevé un uso normal o regular del edificio. Asimismo, las condiciones	
de operabilidad de las instalaciones se consideran en un rango normal.	
7. Descripción que se espera del grado y nivel del mantenimiento.	1.1
Las condiciones de mantenimiento se consideran muy buenas ya que existe un	
programa de mantenimiento del edificio que acompaña a una serie de reco-	
mendaciones para uso de instalaciones que se hicieron junto con el proyecto	
ejecutivo.	
Estimación de la vida útil del edificio	
1. Norma técnica empleada: ISO 15686	
2. Fórmula del método por factores: ESL= 60 x 1.0 x 1.1 x 1.1 x 1.1 x 0.8 x	
1.1 x 1.2	
3. Vida útil estimada del edificio completo:	77.30
Plan de durabilidad del proyecto por estrategias de diseño	
Estrategias	

1. Agua del interior.

- Instalar sistemas de drenaje en complemento a las instalaciones sanitarias que eviten acumulación de humedad al resto del edificio.
- Sellado adecuado de las instalaciones hidráulicas y sanitarias para evitar fugas al resto de los componentes del edificio.
- Adecuada instalación de los muebles y equipos que requieren uso de agua y desechos del mismo líquido, mediante adecuada instalación y sellado.
- Uso adecuado de materiales durables en zonas húmedas como baños, regaderas, sanitarios, cuartos de lavado, cocinas, etcétera.
- Evitar el uso de alfombras y carpetas en zonas húmedas.
- Adecuado diseño e instalación de pisos en zonas de desalojo de agua, poniendo especial atención en pendientes, coladeras y sistemas de sellado.

2. Agua del exterior.

Cimentación:

- Desviar el agua de muros y cimientos, a partir de sistemas de drenajes en subsuelo, basarse en gravas y sistemas de achique cuando exista en exceso.
- Proveer un drenaje adecuado para evitar humedades en niveles más bajos de componentes de concreto.

- Sellar todas las tuberías de instalaciones sanitarias, hidráulicas y otras posibles penetraciones de agua en muros y pisos.
- Sellar todas las juntas constructivas del edificio.
- Cubrir y sellar las conexiones de las bombas hidráulicas y de otros equipos como hidroneumáticos, así como sistemas que utilicen y emanen agua y humedad.
- Manejo sustentable del agua de lluvia, dirigirla a los mantos freáticos y depósitos de
- Impermeabilización total de la cimentación que está directamente en contacto con la humedad.
- Drenar apropiadamente el agua en los sistemas de techos.
- Darle la pendiente adecuada a los pisos y firmes, especialmente en entradas y accesos de vehículos.
- Usar sistemas de drenes de arena, grava en el subsuelo, también donde se requiera guiar el agua hacia fuera y hacia los lados de la subestructura del inmueble.
- Usar materiales de relleno porosos e inertes y no materiales producto de excavaciones.
- Proveer tuberías para drenar el agua del subsuelo en donde se requiera, esto para evitar la acumulación de agua y de humedades.
- Usar aislantes y retardadores de vapor en piezas expuestas a alta humedad.
- Impermeabilizar la base del cimiento y muros, el objetivo es centrarse en la instalación de las ventanas y puertas.
- Proveer drenes adecuados del agua para evitar su acumulación en muros y ventanas.
- Que los sistemas principales de drenes de agua queden por debajo o hasta abajo del nivel de la base de los muros y pisos; necesitan quedar perfectamente sellados.
- Que los drenes de agua de los techos y azoteas den hacia fuera de los muros, evitando escurrimientos.
- En sistemas de tableros de yeso, elevarlos por lo menos 1/2" del nivel del piso o firme de concreto para evitar humedades.
- En la pintura en muros al exterior, aplicar un primer o sellador sobre el aplanado.
- Aplicar las capas de pintura sobre la base de primer sellador en exteriores.
- Sellar todas las ventanas y puertas en relación con los muros y techos, así como un adecuado sellado del vidrio con la ventana.
- Sellar juntas constructivas.
- De preferencia, utilizar materiales durables y con control de la degradación por humedad en ventanas y puertas.
- Evitar el uso de madera para exteriores.
- Usar la ranura por debajo de la losa para gotero en voladizos de los techos que cubran las paredes de los muros exteriores.

- Diseñar las bajadas de agua pluvial o de otros líquidos del edificio de manera independiente, aisladas y selladas respecto a las estructuras; específicamente aisladas de los muros
- Utilizar, si es necesario, membranas especiales de aislamiento por humedad entre el muro y el exterior, especialmente cuando se utilice un muro verde.

Techos y entrepisos:

- Procurar la impermeabilización adecuada en las losas de azotea o techos, que sea totalmente impermeable y que se integre perfectamente con la estructura.
- Procurar un excelente sellado en bajadas de agua pluvial.
- Evitar encharcamientos en la superficies de las losas o techos, procurando la pendiente adecuada y utilizando los materiales apropiados para ello.
- Utilizar materiales bituminosos, tanto para la membrana impermeabilizante como para el sellado, además de juntas.
- Sellado completo de las juntas constructivas entre componentes de construcción de los techos, losas y entrepisos.
- Sellado de domos y tragaluces colocados en la estructura de la cubierta.
- En zonas donde se acumula hielo, procurar una protección extra de impermeabilizante, así como una pendiente adicional para desalojar el agua
- Procurar un reforzamiento adicional de impermeabilizante o uso especial de membrana polimérica para el caso de la construcción de techos verdes sobre la losa o estructura del edificio.
- 3. Infiltración de aire.
- Los filtros de aire de instalaciones especiales deben ser herméticos para evitar la disminución de la potencia de los sistemas.
- Es indispensable realizar el sellado del aire en ductos de ventilación.
- 4. Condensación y evaporación.
- La instalación de toda secadora de ropa debe estar al exterior y priorizar una buena ventilación.
- Aislar todas las tuberías de agua fría y caliente, además de evitar instalaciones de plomería en paredes exteriores.
- Impermeabilizar los acabados de los muros exteriores, adecuar el trabajo para clima cálido-húmedo.

5. Pérdida o ganancia de calor.

Protección del viento, directamente en zonas del inmueble donde no se requiere pérdida del calor a través de aislamiento térmico para evitar enfriamiento de los espacios y de instalaciones: muros, techos, fachadas, entrepisos y cimentaciones.

6. Radiación ultravioleta.

Instalar materiales con propiedades que controlen su degradación por efectos del sol y por cambios bruscos de temperatura.

7. Corrosión.

Aplicar tratamientos, tanto en la estructura como en acabados para evitar la corrosión de los materiales.

8. Control de plagas.

Control apropiado de los roedores.

- 9. Desastres naturales.
- Sismos: apegarse al reglamento de construcción local para cálculo de estructuras por sismo.
- Vientos fuertes: apegarse al reglamento de construcción local para cálculo de estructuras por viento.
- Inundaciones: revisar los planes de desarrollo urbano del lugar para evitar la construcción sobre terrenos en riesgo de inundación.
- Riesgo por fallas geológicas: revisar los planes de desarrollo urbano del lugar para evitar la construcción sobre terrenos en riesgo de falla geológica; en caso de ser edificios importantes, realizar las pruebas geológicas necesarias para ser consideradas en el cálculo.
- Incendios: construir barreras antiincendios en zonas de riesgo; desarrollar el manual contra incendios y de operación en incendios para las edificaciones.

10. Otros requerimientos.

- Garantizar y asegurar que el acabado de techos (impermeabilizante) tenga una vida útil de, por lo menos, siete años.
- Garantizar y asegurar, como mínimo, 10 años de vida útil en materiales para aislamiento térmico.
- Asegurar que los sistemas de aire acondicionado y calefacción, así como otros sistemas electromecánicos aseguren y permitan un acceso para un mantenimiento apropiado.
- Garantizar y asegurar, como mínimo, cinco años para la vida útil en materiales impermeables, aplicando los sistemas de mayor durabilidad de origen natural y ecológico.

- Usar ductos y tuberías rígidas en donde se requiera para asegurar una mayor durabilidad y un mejor funcionamiento de los sistemas e instalaciones.
- Usar los insumos adecuados (gases, combustibles, refrigerantes, etcétera) para el correcto funcionamiento de las instalaciones.

Fuente: Elaboración propia, basada en la metodología planteada por el autor y en la norma ISO 15686, adecuada al contexto mexicano.

Conclusiones

Durante el proceso de diseño arquitectónico, se requiere de un valor en años que determine una vida útil del inmueble para partir de un punto de referencia, y así poder estimar y realizar predicciones acerca de la vida útil.

Existen muchas variables que pueden afectar la durabilidad y vida útil de un edificio, por lo que éstas deben ser ordenadas de tal forma que incluyan todos los posibles factores que deterioran los componentes de los edificios.

Este trabajo propone una metodología para la estimación de la vida útil de un edificio, componentes constructivos o conjuntos de edificios usando información, tanto cuantitativa como cualitativa, para el cálculo de una vida útil estimada que se aproxime lo más posible a una vida útil de diseño desde el punto de vista de los requerimientos arquitectónicos.

La obtención de la vida útil de cada proyecto dependerá de cada factor, del tipo de información ya sea cualitativa, cuantitativa o mixta, lo cual se ve afectado por una variable con el fin de ajustar la confiabilidad en la ponderación de los proyectos a las condiciones más reales de la comparativa entre los dos o más tipos de escenarios.

Para la valoración de los factores se deben identificar los valores más bajos para cada proyecto, proponiendo los puntos de durabilidad específicos en donde se deberá rediseñar los proyectos.

En el caso del ejemplo de aplicación del método, se concluye que la vivienda tipo 2 (v2), por sus características y factores que la rodean, es la más durable y de mayor vida útil; en caso de v2, no se requiere rediseñar el proyecto y de la fase de diseño se pasaría directamente a la fase de construcción. Por el contrario, la vivienda tipo 1 (v1), al ser menor la VUE que la VUR, se debe rediseñar y volver a la fase de diseño poniendo atención ahora en los factores F5 y F1 para mejorar el diseño por durabilidad y pasar a la etapa de construcción.

Se concluye que durante el proceso de diseño arquitectónico es importante y necesario integrar la planeación de la vida útil del proyecto, incluyendo sus componentes, para reconocer las necesidades del proyecto en materia de durabilidad y mantenimiento futuro. El método propuesto en este documento puede ser de utilidad, no solamente para la etapa de diseño arquitectónico, sino también para las subsecuentes etapas del ciclo de vida del proyecto, es decir, la fase de construcción, uso, operación y mantenimiento del inmueble.

El método propuesto tiene como aportación tres estudios básicos que pueden fungir como herramientas de diseño. El primero se trata de la estimación de la vida útil del proyecto que prevé cuánto va a durar aproximadamente el inmueble y nos brinda un dato confiable del edificio en proyección. El segundo genera un plan de durabilidad con base en estrategias de diseño y construcción del inmueble, lo cual mejora y prolonga la vida útil del edificio; finalmente,

se genera un plan de mantenimiento en donde nos acerca o aproxima a las actividades que debemos realizar en el edificio para mantenerlo en vida útil, anticipando así actividades de mantenimiento preventivo, correctivo, reparaciones y reemplazos. Todo conforma, de manera integral, un proyecto más duradero, capaz de proporcionar un mayor rendimiento estético y funcional para lo cual fue diseñado y edificado.

Referencias

- Australian Building Codes Board (2006), *Durability in buildings*, Camberra, Australia, ABCB, 274 pp.
- Building Performance Group Limited (2001), *Building services:* component life manual, Blackwell Science, Estados Unidos de América.
- Building Research Establishment (2007), Methodology for environmental profiles of construction products, Reino Unido, 122 pp.
- Canadian Standards Association (2001), S478-95 (R2001), Guideline on Durability in Buildings, Canadá: CSA.
- Ferreira, Ana Filipa (2009), *Previsão da vida útil de revesti*mientos de pedra natural de paredes, Instituto Superior Técnico, Lisboa, Portugal.
- Grant, Aneurin y Ries Robert (2012), "Impact of building service life models on life cycle assessment", en *Building Research & Information*, 41 (2), 168-186. Recuperado de http://dx.doi.org/10.1080/09613218.2012.730735.
- Green Building Council (2004), LEED CanadaTM, Versión 1.0. Canadá.

- Hernández Moreno, Silverio (2008), "El diseño sustentable como herramienta para el desarrollo de la arquitectura y edificación", en *México*. *Acta Universitaria*, 18(2): 18-23.
- Hernández Moreno, Silverio (2010), Diseño y manejo sustentable en edificación, Universidad Autónoma de Estado de México (UAEMEX), Toluca, México, 196 pp.
- International Standard Organization (2000), Buildings and constructed assets-Service Life Planning, part 1: General Principles, Suiza, 30 pp.
- International Standard Organization (2004), Buildings and constructed assets-Service Life Planning, part 6: Procedures for considering environmental impacts, Suiza, 16 pp.
- ISO (2000), "ISO 15686-1:2000", en Buildings and constructed assets-Service Life Planning, part 1: General Principles, Suiza.
- Macías-Bernal J. M., Calama-Rodríguez J. M. y Chávez-de Diego M. J. (2014), "Modelo de predicción de la vida útil de la edificación patrimonial a partir de la lógica difusa", en *Informes de la Construcción*, 66 (533): 132-155. Recuperado de http://dx.doi.org/10.3989/ic.12.107>.
- Monjo, J. (2007), "Durabilidad vs. vulnerabilidad", en *Informes de la Construcción*, 59(507): 43-58. Recuperado de http://dx.doi.org/10.3989/ic.2007.v59.i507.531.
- Ortega Madrigal, Leticia (2012), "Propuesta metodológica para estimar la vida útil de los sistemas constructivos de fachadas y cubiertas utilizados actualmente con más frecuencia en la edificación española, a partir del método de la norma ISO 15686", Tesis, Escuela Técnica Superior de Arquitectura, Departamento de Construcciones Arquitectónicas, Universidad Politécnica de Valencia, Valencia, España.
- Sjöström, C. y Jernberg, P. (2001), "International standards for design life of constructed assets", en CIB World Building Congress, pp. 1-6, Wellington, Nueva Zelanda.

- Villas, B. R. C. (1995), Sustainable Development and the Advanced Materials, Brazil, Johnson Editor, 275 pp.
- Whole Building Design Guide (2009), Section 01 81 10 (section 01120) Facility service life requirements. Recuperado de http://www.wbdg.org/ccb/FEDGREEN/fgs_018110.pdf>.

Anexo 1

Expectativa de vida útil de los componentes constructivos más comunes en la industria de la construcción en México

Núm.	Elemento	Componente	Especificación	Vida útil (años)
1	Cimentaciones de concreto	Zapatas aisladas, zapatas corridas, losas	Resistencias => de:	100
	armado	de cimentación, muros	F'c= 250 kg/cm ²	
		de contención, pilotes de control.	Fy= 4200 kg/cm ²	
2	Cimentaciones	Membrana impermeabi-	Polímero de polietileno	100
	de concreto armado	lizante en cimientos.	(PET).	
3	Cimentaciones de concreto armado	Relleno de cimenta- ciones.	Arena, gravilla, tezontle o tepetate.	100
4	Cimentaciones de concreto simple	Losas, plantillas de cimentación, muros de contención y zapatas.	Resistencia => de: F'c= 150 kg/cm	100

Núm.	Elemento	Componente	Especificación	Vida útil (años)
5	Cimenta- ciones de mampostería de piedra natural	Mampostería de piedra natural impermeabi- lizada.	Piedra natural de granito.	100
6	Estructura del edificio en concreto armado	Trabes, columnas, cadenas de cerramiento, losas de entrepisos, losas de azotea, muros de carga.	Resistencias => de: F'c= 250 kg/cm ² Fy= 4200 kg/cm ²	100
7	Estructura metálica para edificios	Vigas, columnas, losas de entrepisos, losas de techo.	Resistencias => de: Fy= 4,200 kg/cm ² Límite elástico = 2,800 kg/cm ² E = 2,100,000 kg/cm ² G = 810,000 kg/cm ²	80
8	Estructura del edificio en madera	Vigas, columnas, losas de entrepisos, losas de techo.	Resistencias estructurales para soportar dos a tres niveles.	60
9	Firmes para	Firmes de concreto simple.	Resistencia = de: F'c= 90-150 kg/cm ²	80
10	Aislamiento térmico	Espuma de poliestireno o poliestireno extruido.	Densidad mediana a alta.	80
11	Adhesivos y selladores	Adhesivos y selladores.	Plásticos.	5
12	Adhesivos y selladores	Adhesivos y selladores.	De cementos.	5
13	Muros	Muros de carga de tabique.	Arcilla sinterizado a media- nas temperaturas asentada con juntas de mortero cemento-arena.	60

Núm.	Elemento	Componente	Especificación	Vida útil (años)
15	Muros	Muros de concreto	Véase estructura del edificio	100
		armado.	en concreto armado.	
16	Muros	Muros de carga de	Piedra natural de granito,	100
		piedra natural.	pizarra, arenisca o caliza.	
17	Muros	Muros de carga de	Arcilla sinterizada a altas	80
		cerámica estructural.	temperaturas.	
18	Muros	Muros de carga de	Mezcla de cemento	60
		tabicón de hormigón.	Portland-arena y gravilla de	
			alta densidad.	
19	Muros	Membranas impermea-	Polímero de polietileno	80
		bles en muros.	(PET) y otros compuestos	
			plásticos que pueden incluir	
			poliéster u otras fibras	
			sintéticas o aditivos.	
20	Muros	Aislamiento impermea-	Tipo rígido (laminado) de	80
		ble y térmico en muros.	espuma de poliuretano PUR	
			de valor U= 35 W/m ² /K	
21	Muros	Muros divisorios.	Tablero de yeso de 12.5	30
			mm de espesor, acabado	
			con pasta y pintura para	
			interiores en ambos lados.	
22	Muros	Muros divisorios.	Tablero de madera (en	40
			interiores).	
23	Muros	Muros divisorios.	Tablero de mortero	50
			cemento-arena.	
24	Muros	Muros divisorios.	Bloques huecos de concre-	50
			to cemento-arena-gravilla.	
25	Muros	Muros divisorios.	Bloques huecos de mor-	40
			tero cal-arena-puzolanas	
			naturales.	
26	Muros	Muros divisorios.	Arcilla sin sinterizar (adobe)	30
			comprimidos y secados	
			al sol.	
27	Muros	Muros divisorios.	Bloques huecos de cerámi-	80
			ca de alta temperatura.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
28	Muros	Muros divisorios.	Paneles de emparedado	40
			de malla metálica, mortero	
			cemento-arena (F'c=100	
			kg/cm²) y placa interior de	
			poli-estireno como alige-	
			rador, acabado con pintura	
			vinílica para exteriores.	
29	Muros	Revestimiento en muros	Mortero cemento-arena.	15
		exteriores.		
30	Muros	Revestimiento en muros	De yeso a una capa de 12	60
		interiores.	mm de espesor, mínimo en	
			muros internos de mam-	
			postería.	
31	Muros	Revestimiento en muros	De mortero cal y arena para	40
		en interiores.	interiores.	
32	Muros	Revestimiento en muros	Azulejos y mosaicos de	80
		interiores.	cerámica de alta resistencia	
			de un mínimo de 4 mm de	
			espesor, asentados con	
			adhesivo o mortero de alta	
			resistencia a la humedad	
			y a la contracción sobre	
			superficie firme y seca. Tra-	
			bajado especialmente para	
			acabados en zonas húmedas	
			como baños y cocinas.	
33	Muros	Revestimiento en muros	De placas de acero pre-	80
		para exteriores.	galvanizado (275 g/m²)	
			para fachadas.	
34	Muros	Pintura al interior.	Pintura vinílica en interiores	7
			de muros (dos capas).	
35	Muros	Pintura al exterior.	Pintura vinílica en exteriores	5
			de muros (dos capas).	
36	Pisos	Acabado en pisos al	Pisos de aglomerado	30
		interior.	de maderas tipo MDF de	
			tablero de media densidad.	
			Texturizado y diseñado para	
			áreas no húmedas o secas.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
37	Pisos	Acabado en pisos al	Piso de cubierta de mosai-	40
		interior.	cos de policloruro de vinilo	
			(PVC flexible) sobre firme	
			de concreto, con acabado	
			pulido de cemento-arena	
			como sub-base.	
38	Pisos	Acabado en pisos al	Acabado pulido (con color	80
		interior.	integrado en polvo) de ce-	
			mento Portland-arena sobre	
			firme de concreto de	
			50-75 mm de espesor.	
39	Pisos	Acabado en pisos al	Azulejos y mosaicos de	40
		interior.	concreto de 9.5 mm espe-	
			sor, asentados con mortero	
			cemento-arena sobre firme	
			de concreto simple.	
40	Pisos	Acabado en pisos al	Pisos de madera dura.	60
		interior.		
41	Pisos	Acabado en pisos al	Pisos de madera laminada.	30
		interior.		
42	Pisos	Acabado en pisos al	De alfombras.	5
		interior.		
43	Pisos y pavi-	Acabado en pisos al	Piso de concreto estam-	80
	mentos	exterior.	pado.	
44	Pisos y pavi-	Acabado en pisos al	Pisos de cerámica de alta	80
	mentos	exterior.	temperatura.	
45	Pisos y pavi-	Acabado en pisos al	Pavimentos de concreto	25
	mentos	exterior.	para tráfico pesado.	
46	Pisos y pavi-	Acabado en pisos al	Pavimentos de concreto	50
	mentos	exterior.	para tráfico ligero (banque-	
			tas y andadores).	
47	Pisos y pavi-	Acabado en pisos al	Pavimentos de concreto	40
	mentos	exterior.	tipo "adoquín" para anda-	
			dores con guarnición de	
			concreto.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
48	Techos y entre-	Estructura de techos y	Losa plana y/o reticular de	100
	pisos	entrepisos.	concreto armado.	
49	Techos y	Estructura de techos y	Losa de estructura metálica	100
	entrepisos	entrepisos.	tipo losacero® de acero	
			dulce post-galvanizado con	
			capa de compresión de	
			concreto armado con malla	
			electro-soldada.	
50	Techos y	Estructura de techos y	Losa y techos de prefabri-	60
	entrepisos	entrepisos.	cado de concreto simple,	
			en forma de vigueta y	
			bovedilla, con capa de com-	
			presión de 5 cm, reforzada	
			con malla metálica.	
51	Techos y	Estructura de techos y	Losa o techo catalán a base	40
	entrepisos	entrepisos.	de vigas de madera estruc-	
			tural y teja.	
52	Techos y	Acabados en techos y	Impermeabilizante de políme-	7
	entrepisos	cubiertas.	ro en rollo para	
			techos, con acabados	
			diversos de membranas de	
			poliéster, de	
			asfalto, de arena silicao	
			de polietileno.	
53	Techos y	Acabados en techos y	Enladrillado con petatillo	25
	entrepisos	cubiertas.	de arcilla cocida a medianas	
			y bajas temperaturas, asen-	
			tado con mortero,	
			cemento-arena 1:4 y con-	
			glomerado con lechada de	
			cemento Portland-gris.	
54	Techos y	Acabados en techos y	Impermeabilizante de pintu-	3
	entrepisos	cubiertas.	ra de acrílico a dos capas.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
55	Techos y	Acabados en techos y	Teja de barro, sinterizada	40
	entrepisos	cubiertas.	a medianas temperaturas,	
			asentada sobre firme de	
			concreto previamente	
			impermeable.	
56	Techos y	Acabados en techos y	Azulejos y mosaicos de	40
	entrepisos	cubiertas.	concreto de 9.5 mm	
			de espesor.	
57	Techos y	Acabados en techos y	Teja de polímero de	35
	entrepisos	cubiertas.	polipropileno, de mediana	
			y alta resistencia al vapor	
			de agua.	
58	Techos y	Falsos plafones (cielos	Tablero de yeso de	40
	entrepisos	en techos).	12.5 mm de espesor, acaba-	
			do con pasta y pintura para	
			interiores en ambos lados;	
			previamente tapadas las	
			juntas.	
59	Techos y	Aislamiento térmico en	Fibra de vidrio de densidad	80
	entrepisos	techos.	media (75 kg/m³) en 2	
			capas de 100 mm con valor	
			U de 0.25 W/m²/K, entre	
			la estructura de techo y el	
			falso plafón.	
60	Escaleras	Escaleras al interior.	De madera dura.	70
61	Escaleras	Escaleras al exterior.	De concreto.	80
62	Escaleras	Escaleras al exterior.	De metal.	60
63	Ventanas	De una sola lámina de	Marco de madera y valor	20
		vidrio, prepintadas y	U=1.8 W/m ² /K, impregnada	
		pintadas.	con un solvente orgánico	
			protector y preservador	
			con uniones totalmente	
			recubiertas con sellador de	
			grano fino.	
64	Ventanas	Lámina de vidrio de	De silice.	15
		6 mm.		
		Sin templar.	De boratos.	25

Núm.	Elemento	Componente	Especificación	Vida útil (años)
65	Ventanas	De doble lámina de	Marco de madera y valor	20
		vidrio, prepintadas y	U=3.6 W/m ² /K, impregnado	
		pintadas.	con un solvente orgánico	
			protector y preservador	
			con uniones totalmente	
			recubiertas con sellador de	
			grano fino.	
66	Ventanas	De una sola lámina de	Marco de metal (fierro, ace-	25
		vidrio, prepintadas y	ro, aluminio) y valor U=1.8	
		pintadas.	W/m ² /K, prepintadas con	
			un "primer" de base sol-	
			vente y pintada con pintura	
			alquidalica anticorrosiva.	
67	Ventanas	De una sola lámina de	Marco de PVC o PUR y valor	50
		vidrio, prepintadas y	U=1.8 W/m ² /K, y pintada	
		pintadas.	de fábrica con pintura	
		ľ	alquidálica anticorrosiva	
			de fábrica; densidad media	
			para uso en condiciones de	
			humedad, uniones selladas	
			desde la fábrica.	
68	Puertas	Puerta al exterior	De madera dura, impregnada	25
			con un solvente orgánico	
			protector y preservador	
			con uniones totalmente	
			recubiertas con sellador de	
			grano fino.	
69	Puertas	Puerta al exterior	De metal (fierro, acero, alu-	30
			minio), prepintada con un	
			"primer" de base solvente y	
			pintada con pintura alqui-	
			dalica anticorrosiva.	
70	Puertas	Puerta al exterior.	PVC o PUR, color integrado	50
-			anticorrosivo de fábrica;	
			densidad media para uso en	
			condiciones de humedad.	
			uniones selladas desde la	
			fábrica.	
			iabiica.	1

Núm.	Elemento	Componente	Especificación	Vida útil (años)
71	Puertas	Puerta al interior.	De madera dura, impregna-	50
			da con un solvente orgáni-	
			co protector y preservador,	
			con uniones totalmente	
			recubiertas con sellador de	
			grano fino.	
72	Puertas	Puerta al interior.	De metal (fierro, acero, alu-	50
			minio), prepintada con un	
			"primer" de base solvente y	
			pintada con pintura alqui-	
			dalica anticorrosiva.	
73	Puertas	Puerta al interior.	PVC o PUR, color integrado	60
			anti-corrosivo de fábrica;	
			densidad media para uso en	
			condiciones de humedad,	
			uniones selladas desde la	
			fábrica.	
74	Accesorios y	Accesorios y cubiertas	Cubierta para preparación	20
	herrajes	en cocinas.	de comida de laminado	
			rígido de aglomerado de	
			madera o MDF de 12 mm	
			espesor, con cubierta de re-	
			sinas epóxicas de 2 a 3 mm.	
75	Accesorios y	Accesorios y cubiertas	Cubierta metálica de acero	50
	herrajes	en cocinas.	stainless grado 1.4301, tipo	
			304.	
76	Accesorios y	Fregaderos y escurri-	De acero stainless grado	50
	herrajes	deros.	1.4301, tipo 304.	
77	Accesorios y	De sanitarios.	Lavabos de cerámica	60
	herrajes		vitrificada o de porcelana,	
			incluyendo el pedestal.	
78	Accesorios y	De sanitarios.	wcs. Cacerola de porcelana	50
	herrajes		y depósito de cerámica,	
			ambos de 12 mm como	
			mínimo de espesor.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
79	Accesorios y	De sanitarios.	Tinas para baño de acero	40
	herrajes		estampado de esmalte ví-	
			treo (con el espesor mínimo	
			del acero de 2.2 mm).	
80	Accesorios y	De sanitarios.	Ducha: incluye regadera de	20
	herrajes		acero inoxidable, cancel	
			de acrílico reforzado de 8	
			mm de espesor y pantallas	
			de vidrio templado.	
81	Accesorios y	De sanitarios.	Mueble de baño para	20
	herrajes		tocador de aglomerado de	
			madera tipo triplay® 15	
			mm de espesor, resistente	
			a la humedad, forrado con	
			cubierta de melamina (la-	
			minado plástico de resinas	
			tipo formica®) por ambos	
			lados, sellado en	
			las uniones y recortes.	
			Todas las	
			orillas y los costados forra-	
			dos con el mismo material	
			de melamina (laminado	
			plástico de resinas tipo	
			formica®) o también puede	
			ser forrado con aluminio.	
82	Accesorios y	Muebles para recá-	Armarios empotrados tipo	20
	herrajes	maras.	closets.	
			Con aglomerado de madera	
			tipo <i>triplay</i> ® de 15 mm de	
			espesor, forrados en ambos	
			lados con lámina de mela-	
			mina y sellado al tope en	
			juntas y recortes. Todos los	
			lados deben ser cubiertos	
			con el mismo material y	
			sellado al tope.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
83	Sistemas de calefacción	Radiadores-calefac- tores.	Radiadores instalados en muros.	20
84	Sistemas de calefacción y aire acondicionado	Sistema radiante o de radiador.	Válvulas del termostato.	15
85	Sistemas de calefacción y aire acondicionado	Ductos del aire acondicionado.	De aluminio.	35
86	Sistemas de calefacción y aire acondicionado	Ductos del aire acondicionado.	De acero inoxidable.	30
87	Sistemas de calefacción y aire acondicionado	Ductos del aire acondicionado.	De tablero de vermiculita.	35
88	Sistemas de calefacción y aire acondicionado	Ductos del aire acondicionado.	De tablero de silicato de calcio.	35
89	Sistemas de calefacción y aire acondicionado	Filtros de aire (marco).	De aleaciones, base aluminio.	25
90	Sistemas de calefacción y aire acondicionado	Filtros de aire (marco).	De acero dulce formado en frío.	20
91	Sistemas de calefacción y aire acondicionado	Filtros de aire.	Filtro intercambiable.	1

Núm.	Elemento	Componente	Especificación	Vida útil (años)
92	Sistemas de	Unidad central de calor.	Eléctrico.	20
	calefacción y			
	aire acondicio-			
	nado			
93	Sistemas de	Unidad central de en-	Eléctrico.	20
	calefacción y	friamiento (chillers).		
	aire acondicio-			
	nado			
94	Sistemas de	Unidad central de en-	Compresores de vapor.	10
	calefacción y	friamiento (chillers).		
	aire acondicio-			
	nado			
95	Sistemas de	Unidad central de en-	Ventiladores centrífugos y	15
	calefacción y	friamiento, (chillers).	combinados.	
	aire acondicio-			
	nado			
96	Sistemas de	Motores para sistemas	Eléctrico (construido de	15
	calefacción y	de HVAC.	aluminio, de hierro o	
	aire acondicio-		de acero).	
	nado			
97	Sistemas de	Termostato.	Manual.	20
	calefacción y			
	aire acondicio-		Inteligente.	15
	nado			
98	Sistemas de	Tuberías.	De plástico: polietileno	80
	calefacción y		(PET), cloruro de polivinil	
	aire acondicio-		(PVC) o estireno de acriloni-	
	nado		trilo butadieno (ABS).	
99	Instalación	Cable para baja tensión.	Incluye conductor de cobre	35
	eléctrica		y aislante gemelo de PVC o	
			algún termo-plástico.	
100	Instalación	Medidores.	Con dispositivo de protec-	25
	eléctrica		tor de circuitos.	
101	Instalación	Sockets.	Plásticos con partes	25
	eléctrica		metálicas.	
102	Instalación	Interruptores.	Metálicos con partes	20
	eléctrica		plásticas.	
103	Instalación	Tableros de control.	Metálicos con partes	25
	eléctrica		plásticas.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
104	Instalación	Motores eléctricos.	Eléctrico (construido de alu-	15
	eléctrica		minio, de hierro o de acero).	
105	Instalación	Plantas generadoras de	De diésel.	20
	eléctrica	energía.		
106	Instalación	Plantas generadoras de	Alternadores.	25
	eléctrica	energía.		
107	Instalación	Plantas generadoras de	Baterías para arrancadores.	10
	eléctrica	energía.		
108	Instalación	Apagadores para lumi-	De dos vías con componen-	25
	eléctrica	narias.	tes plásticos y metálicos.	
109	Instalación	Luminarias de bajo	Luminarias fluorescentes,	Sist.:
	eléctrica	consumo energético.	con cubierta y cuerpo	15
			de acero dulce y reflector de	
			aluminio, con un rango pro-	Tubo:
			medio de duración del tubo	(3)
			fluorescente de 8,000 a	
			10, 000 horas.	
110	Instalación	Luminarias de bajo	De alta intensidad de	Sist.:
	eléctrica	consumo energético.	descarga (HID), de sodio	20
			o mercurio a alta presión,	
			con un rango promedio de	
			duración de	
			14,000 a 28,000 horas.	
111	Instalación	Sistema contra incen-	Sistema de cableado contra	20
	eléctrica	dios.	incendios. Con sensores,	
			y detectores de humo y	
			calor alimentados por red	
			eléctrica.	
			Los sensores están prote-	
			gidos con un dispositivo	
			que los mantienen libres de	
			polvo y humedad.	
112	Instalación	Sistema contra incen-	Aspersores (sprinklers) en	20
	eléctrica	dios.	condiciones húmedas.	
113	Instalación	Sistema contra incen-	Aspersores (sprinklers) en	40
	eléctrica	dios.	condiciones secas.	

Núm.	Elemento	Componente	Especificación	Vida útil (años)
114	Instalación de gas	Tubería y accesorios.	De cobre.	15
115	Instalación sanitaria	Tubos de ventilación y respiraderos.	Tubo de PVC.	100
		Tubería instalada con accesorios.		20
116	Instalación sanitaria	Tuberías.	Los ramales en tuberías de plástico: polietileno (PET), cloruro de polivinil (PVC) o estireno de acrilo-nitrilo butadieno (ABS).	100
			Tubería instalada con accesorios.	15
117	Instalación sanitaria	Drenaje y desagüe de aguas negras, incluye trampas antisifón.	Tubería de PVC. Tubería instalada con accesorios.	100 15
118	Instalación sanitaria	Ductos para tuberías sanitarias.	Ducto de aglomerado de madera de mediana densidad (para uso en condiciones secas) tipo triplay® o MDF terminado con pintura alquidálica, acrílica o esmalte de poliuretano (PUR).	30
119	Instalación hidráulica	Tinacos.	Tinaco de plástico PVC para agua potable.	30
120	Instalación hidráulica	Tinacos.	Tinaco de plástico de fibra de vidrio para agua potable.	35
121	Instalación hidráulica	Tuberías y accesorios.	De cobre.	25
122	Instalación hidráulica	Tuberías y accesorios.	De acero inoxidable.	20

Núm.	Elemento	Componente	Especificación	Vida útil (años)
123	Instalación hidráulica	Tuberías y accesorios.	De acero galvanizado.	20
124	Instalación hidráulica	Tuberías y accesorios.	De hierro dúctil.	15
125	Instalación hidráulica	Bomba de agua.	Doméstica.	10-
126	Instalación hidráulica	Válvulas.	De cobre.	20
127	Instalación hidráulica	Válvulas.	De hierro colado.	15
128	Instalación hidráulica	Válvulas.	De acero inoxidable.	20
129	Instalación hidráulica	Boilers o calentadores de agua de gas.	De acero inoxidable para uso doméstico.	10
130	Instalación hidráulica	Sistema de captación de agua de lluvia.	Incluye membrana impermeable de polímero con canalones y bajadas de agua de PVC.	25
131	Elevadores	Elevadores y monta- cargas.	Elevadores y montacargas.	20
132	Energía alternativa	Arreglo fotovoltaico.	Paneles fotovoltaicos de si- licio, conductores de cobre aislado con termoplásticos, baterías y convertidores.	15

Fuente: National Association House of Building, 2007; Architectural Institute of Japan, 1993; Australian Building Codes Board, 2006; Mayer, 2005; Building Performance Group Limited, 2001.

Anexo 2

Programa de diseño arquitectónico sustentable para el contexto de la edificación en México, basado en el modelo internacional LEED® y adaptado por Silverio Hernández Moreno al contexto mexicano.

Programa de diseño sustentable en edificación por rubro ambiental (estrategias de diseño arquitectónico sustentable) Edificio: Ubicación: Fecha: Responsable de la obra: Arquitectura sustentable: Silverio Hernández Moreno 1. Estrategias del sitio 1.1 Evitar sitios vulnerables a riesgo o protegidos como reservas naturales. 1.2 Orientación del edificio y emplazamiento en el terreno. 1.3 Plan de manejo de la obra exterior (pavimentos, andadores, calles). Aplicar concreto poroso o permeable en pavimentos exteriores; revisar el sistema de alcantarillado, lámparas al exterior con celda fotovoltaica y sensores de luz. 1.4 Control de la erosión y plan de manejo del paisaje entorno al sitio. 1.5 Alternativas de transporte:

Peatonal (considerar áreas de aparcamiento de bicis y motos, así como accesos y rutas)

Bicicleta

Motocicleta

Transporte público

Transporte privado

- 1.6. Desarrollo del sitio en su protección y restauración (incluye relación biótica y abiótica del lugar, acrecentar la biodiversidad ecológica del sitio, creación de microclimas al interior del sitio, usar vegetación endémica).
- 1.7. Planeación y control de la cantidad de agua de lluvia en el sitio (captación, almacenaje y uso).
- 1.8. Reducción de islas de calor (ejemplo: con techos verdes en la azotea, jardines y árboles al exterior).
- Reducción de la contaminación lumínica, acústica y por malos olores (mediante barreras naturales).

2. Estrategias de agua

- 2.1. Mínimo de tuberías e instalaciones y eficiencia en sus conexiones.
- 2.2. Aseguramiento y medición del rendimiento de la cantidad del agua en el edificio completo, por partes o en condominio).
- 2.3. Instalaciones adicionales tanto en tubería como en conexiones; uso de lavabos, mingitorios e inodoros ahorradores, uso de sensores de tiempo en lavabos y mingitorios para reducir el consumo de agua desde 10% hasta 40%.
- 2.4. Reducción del consumo del agua de la red con agua de lluvia (30 %).
- 2.5. Uso del agua en torres de enfriamiento en climas cálidos.
- 2.6. Uso de sistemas para aprovechamiento de aguas grises para aplicaciones no potables (incluye tratamiento biológico y químico).
- 2.7. Tratamiento de aguas negras.

3. Estrategias de energía

Control pasivo para rendimiento de energía en el edificio

- 3.1. Orientación del edificio para aprovechamiento de ganancia o pérdida de calor.
- Optimizar el envolvente del edificio para mejorar el rendimiento térmico del inmueble (aislamiento térmico al norte, sellado de ventanas y juntas constructivas).
- 3.3 Proveer iluminación natural (tragaluces, domos, persianas, parasoles).
- 3.4. Proveer ventilación natural (ventilación directa, cruzada, barlovento y sotavento, ventanas, ventilas, ventiladores pasivos).
- 3.5. Proveer ecotecnologías para adecuada ganancia o pérdida del calor (para ventilar y enfriar principalmente).
- 3.6. Control de la humedad al interior del inmueble.

Control activo para el rendimiento de energía en el edificio

- 3.7. Iluminación artificial (reducir la energía por iluminación de lámparas ahorradoras, uso de sensores y actuadores inteligentes).
- 3.8. Ventilación artificial (sistemas de aire acondicionado y ventiladores eléctricos combinados con sensores y actuadores inteligentes o automatizados).
- Ganancia o pérdida de calor artificial (sistemas de aire acondicionado y calefacción combinados con sistemas inteligentes o automatizados).
- 3.10. Humidificación y des-humidificación artificial e inteligente.

Diseño eficiente de los sistemas electromecánicos

- 3.11. Proveer una adecuada instalación de iluminación artificial.
- 3.12. Maximizar el rendimiento de los sistemas electromecánicos (posible uso de capacitores eléctricos).
- 3.13. Uso eficiente de los equipos y aparatos.
- 3.14. Instalación de dispositivos eléctricos reductores del consumo de energía eléctrica (capacitores).

Uso de energía de bajo impacto ambiental

3.15. Uso de energías renovables u otras fuentes alternas (fotovoltaica con un máximo de 10 % de la carga total instalada y calentamiento pasivo del agua).

Simular el total de la energía que se usaría

- 3.16. Integrar los sistemas y reducir el uso total de la energía hasta 30 % (se estima 20 % en relación con edificios convencionales).
- 4. Estrategias de confort al interior

Calidad del aire al interior

- 4.1. Controlar la humedad y prevenir agentes infecciosos (integrar sensores de humedad en el sistema de aire acondicionado).
- 4.2. Proveer buena ventilación para mayor confort térmica y patógena.
- 4.3. Control del tabaco (usando señalización).
- 4.4. Control de la calidad del aire al interior (plan y monitoreo, utilizando sensores de CO).

Factores humanos

- 4.5. Proveer buenas condiciones térmicas (diseño pasivo y activo).
- 4.6. Proveer buena iluminación (diseño pasivo y activo).
- 4.7. Proveer una buena ventilación (diseño pasivo y activo).
- 4.8 Proveer buenas condiciones acústicas (diseño pasivo y activo).
- 4.9. Proveer buenas condiciones de vibraciones (diseño pasivo y activo).
- 4.10. Proveer adecuado desahogo visual al exterior (diseño pasivo).
- 4.11. Controlar los malos olores externos (diseño pasivo y activo).
- 4.12. Control del confort por ocupación y ergonomía (diseño pasivo y activo).

4.13. Control de condiciones de humedad (diseño pasivo y activo).

Otros factores

- 4.14. Limpieza y mantenimiento del inmueble.
- 4.15. Productos y equipos usados para limpieza y mantenimiento (de tipo biodegradable).
- 4.16. Control interno de contaminantes químicos y físicos (manual de limpieza y mantenimiento).

5. Estrategias en materiales de construcción

 Evaluación de propiedades de materiales y disminución de volúmenes en la obra.

Extracción de materias primas

5.2. Uso de materiales de bajo impacto ambiental durante su ciclo de vida.

Producción

- 5.3. Uso de materiales recuperados y remanufacturados.
- 5.4. Uso de materiales y productos con contenido reciclado.
- 5.5. Uso de materiales renovables.

Distribución

5.6. Uso de materiales producidos localmente.

Instalación y construcción

- 5.7. Uso de materiales de baja emisión de sustancias volátiles (evitar materiales como selladores y pinturas con alto índice de VOC).
- 5.8. Uso de materiales durables (revisar la vida útil que marca el fabricante; si no, estimarla).

Reuso y reciclaje

5.9. Uso de materiales reusables, reciclables y biodegradables.

6. Estrategias en desperdicios de construcción

- a. Reducción de los desechos y desperdicios en todo el ciclo de vida.
- b. Manejo apropiado de los residuos peligrosos.
- Elaboración de un manual de mantenimiento para reducir desperdicios en todo el ciclo de vida del inmueble.

Conservación de recursos

- Reutilización de edificios existentes (o también conservar o reusar partes del edificio).
- e. Diseño para un menor uso de materiales.
- f. Diseño de edificios flexibles y durables.
- g. Diseño de edificios para ser desmantelados, no demolidos.

Manejo de desperdicios

h. Ahorrar y reciclar los desperdicios de demolición.

- i. Reducir, reutilizar y reciclar los desperdicios de construcción.
- j. Reducir y reciclar los desperdicios de empaquetado de productos.
- k. Reducir y reciclar los desperdicios de los usuarios del edificio.
- I. Reducir y desechar apropiadamente los desperdicios peligrosos.

Fuente: Elaborado para el contexto de la edificación en México por Silverio Hernández Moreno, basado en el modelo internacional LEED®, 2010.

En este anexo es necesario aclarar que los criterios de discriminación se basaron en la forma de diseñar, construir, mantener, operar, demoler, de construir, reciclar o reutilizar los edificios en el contexto mexicano.

Casos prácticos sobre estimación de la vida útil en proyectos arquitectónicos se terminó de imprimir en octubre de 2017 en los talleres de Ediciones Verbolibre, S.A. de C.V. 1 o. de mayo núm. 161-A, Col. Santa Anita, Deleg. Iztacalco, México, D.F., C.P. 08300. Tel.: 3182-0035. <edicionesverbolibre@gmail.com>. El tiraje consta de 500 ejemplares.

Otros títulos Eón/UAEM

Las ciencias sociales y sus abordajes en los estudios avanzados Ramiro Medrano González Aristeo Santos López Juan José Gutiérrez Chaparro (Coordinadores)

La configuración capitalista de paisajes turísticos Lilia Zizumbo Villarreal Neptalí Monterroso Salvatierra (Coordinadores)

Resiliencia y personalidad en niños y adolescentes. Cómo desarrollarse en tiempos de crisis Norma Ivonne González Arratia López Fuentes

Diez autores clave para comprender la comunicación como metadisciplina Gustavo Garduño Oropeza Lenin Martell Gámez (Coordinadores)

E ste libro aborda casos prácticos para estimar la vida útil de proyectos arquitectónicos. Ofrece datos relevantes para diseñar y construir cualquier proyecto, sobre todo para planear durabilidad y mantenimiento en una construcción. La aportación que aquí se vierte pretende brindar soluciones a la gran problemática de México y el mundo: los despachos de arquitectura y contratistas, por lo general, ignoran estos procedimientos.

