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27.1 Introduction

The use of nanoparticles in human lives and activities is increasing each day. The
concept of nanoparticles has been applied in food packaging, equipment manufac-
turing, and health care and could extend their applications in diverse fields as more
discoveries unfold. Agriculture is currently facing challenges and backlashes on its
present way of practice and the effect of its previous activities. Many practices have
been banned or limited because of their relative effects on human health due to re-
sistance, environmental pollution, and residues in food production. Because of these
complications, farmers, academics, and researchers are dealing with implications to
combat various health-related issues, thereby reducing morbidity and mortality of
livestock. Several options have been explored, especially on the use of materials of
phytogenic origins for animal health. Although anecdotal, several successful cases
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were reported as evidenced by the ethnoveterinary practices among rural and no-
madic farmers. However, the modern-day intensive system of livestock farming faces
increased pressure of meeting the demand for animal products. To meet this demand,
the antimicrobial feed additives or drugs are essential for either curative or preventive
purposes. Epidemic outbreaks of zoonotic or animal-related diseases usually have
devastating effects on livestock production activities in nations, with many farmers
being unable to recover economically from the shock. For instance, the outbreak of
Avian influenza in Nigeria and African swine fever in Asian countries in 2006 and
2019 caused the loss of millions of birds and pigs, which has economic and protein
security implications. Other challenges in animal agriculture include the prevention
of environmental pollution, disease outbreak, re-emergence of infectious diseases,
antimicrobial resistance of strains to established drugs, and the emergence of resis-
tance against newly developed antibiotics. The problems demand the use of potential
alternatives in veterinary medicine and animal health.

Nanotechnology holds some potential for use in the activities related to animal
production, health, and veterinary medicine (Meena et al., 2018). This technique
uses biogenic, organic, and inorganic minute-sized (usually between 1 and 100 nm)
materials for various applications (Adegbeye et al., 2019). The term nanoparticles
refers to their small sizes. These nanoparticles have a high surface area, charges,
catalytic activity, and adsorption activity (Khurana et al., 2019). Furthermore, they
could provide alternatives for developing new drugs, delivery of vaccines, adjuvants
to improve immune responses, antigen stability, and immunogenicity (Sekhon, 2014;
Zhao et al., 2014; Hill and Li, 2017; El-Sabry et al., 2018) and has high potential
for use in veterinary medicine. As the field of nanotechnology continues to gather
attention, its use in animal agriculture will be more expansive (Hill and Li, 2017)
and could contribute to the development of nanovaccines, nanoantibiotics, and nano-
antibiotics-hybrids with various diagnostic and therapeutic applications.

Several nanoparticles such as silver, gold, calcium, iron, selenium, silicon, tita-
nium, and zinc-based particles have been used in various agricultural and environ-
mental applications. Of these nanoparticles, silver nanoparticles have distinguished
themselves as strong antimicrobial agents by causing death and inhibiting pathogenic
organisms (bacterial, fungal, and viral origin). The objective of this chapter is to ex-
plore various ways by which silver nanoparticles could have veterinary applications
in livestock farming. Also, this chapter explored some negative impacts of silver
nanoparticles on livestock performance and health.

27.2 Brief on silver nanoparticle synthesis

The increased applications of silver nanoparticles in health, cosmetics, electro-
chemistry, material science, food, and agriculture result from their distinctive phys-
icochemical properties and varying methods of synthesis. These methods include
chemical, physical, and biological (microbial and plant-based); however, due to con-
cerns about the hazardous byproducts, expensive, low yield, and labor-intensive from
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chemical (requires additional reducing and stabilizing/capping agent) and physical
method, green synthesis of silver nanoparticles methods are being used (Ledwith
et al., 2007). The green (biological) method of synthesis is a sustainable approach
that involves controllable design and processes of cost-effective and less/no toxic
nanoparticle substances (Ahmad et al., 2019; Tripathi et al., 2019). For a sustainable
livestock agricultural management, the use of green synthesis approach is an inter-
esting area because of its economic, biocompatible, and eco-friendly benefits over
chemical and physical methods. These methods include pest and disease control,
disinfection of livestock, home, and utensils, and as feasible alternative to antibiotics
(Huang et al., 2014).

Silver nanoparticles have been synthesized from plant extracts such as Cleome
viscose, Alfalfa sprouts, Elaeagnus latifolia, Geranium, Ganoderma neojaponicum,
Glycyrrhiza glabra, Feronia elephantum, Amphipterygium adstringens, Aloe vera,
neem, and bamboo (Gardea-Torresdey et al., 2003; Yasin et al., 2013; Rodriguez-
Luis et al., 2016; Lakshmanan et al., 2018; Eze et al., 2019). Bacteria and fungi
are major sources for microbial-based synthesis of silver nanoparticles. The bac-
teria (Pseudomonas stutzeri, Bacillus spp., Escherichia coli, Xanthomonas spp.,
Staphylococcus spp., Deinococcus radiodurans, and lactic acid bacteria) and fungi
(Aspergillus spp., Arthroderma fulvum, Trametes ljubarskyi, Fusarium oxysporum,
and Ganoderma enigmaticum) are known for their great potential in the biosynthe-
sis of silver nanoparticles with controllable uniformity and stability (Bhainsa and
D’Souza, 2006; Gudikandula et al., 2017; Javaid et al., 2017). Subsequent studies
demonstrated other cell-mediated silver nanoparticles synthesis with macro- and
microalgae such as Caulerpa racemosa, Sargassum muticum, Chlorella vulgaris,
Spirulina platensis, Chaetoceros calcitrans, Padina pavonia, Isochrysis galbana,
and Tetraselmis gracilis because of their high silver metal uptake potential (Azizi
etal., 2013; Kathiraven et al., 2015; Annamalai and Nallamuthu, 2016; Abdel-Raouf
et al., 2019; Khanna et al., 2019). Biosynthesis of silver nanoparticles involves ei-
ther intracellular or extracellular reduction of Ag* to Ag’ (Fig. 27.1) facilitated by
active compounds such as alkaloids, terpenes, fatty acids, and amino acids in bio-
logical extracts for stabilization (Khanna et al., 2019). These processes including
dimension and morphology of the nanoparticles are influenced by factors such as
temperature, pH, extract concentration, exposure/reaction time, interactions, and
biochemical activities (Pathak et al., 2019). The potential delivery methods of silver
nanoparticles have been extensively discussed by Hill and Li (2017) and Fahimirad
etal. (2019).

27.3 Potential routes of administration

Silver nanoparticles are efficient materials for therapeutics and drug delivery in
veterinary practices. The minute-sized particles provide potentiality in bypassing
many-body barriers such as placenta and blood—brain barriers. Silver nanoparticles
could be applied through several means such as topical, oral, intranasal, intravenous,
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FIG. 27.1
Synthesis and characterization techniques of silver nanoparticles.

muscular, and transdermal nanodelivery systems (Sekhon, 2014). Other means in-
clude in ovo, intravenous (Lee et al., 2018; Mathur et al., 2018), intragastric (Melnik
et al., 2013), intraperitoneal (Doudi and Sertoki, 2014), and subcutaneous (Tang
et al., 2007; Mathur et al., 2018) injections. Administering silver nanoparticles
through inhalation for 6 h/day for 90 days revealed no genotoxicity with a reduced
lung burden of 24 h postexposure (Kim et al., 2011).

27.4 Potential for nanoveterinary application of silver
nanoparticles

Nanomedicine refers to the procedure of applying nanoparticles in diagnosis, progno-
sis, and treatment, while nanopharmacy and nanotherapy relate to their utilization in
drug-making-related applications and animal rehabilitation, respectively. It involves
the “smart” delivery of a drug to the target tissue with a profile that drugs are delivered
as needed (Scott, 2005). These drugs could be packed with biodegradable nanoparti-
cles so that they would be delivered to the intestine for absorption (Simon et al., 2016)
and reach other target sites within the body. Further, the use of silver nanoparticles
could be extended to treat the ailments caused by various diseases, parasites, open
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injuries, and other microbial infections. This section is meant to discuss the various
applications of silver nanoparticles in livestock health and well-being.

27.5 Endoparasites (helminths)

Helminthiasis is a major challenge in extensive livestock management systems in-
volving grazing animals for a significant period. The mortality and morbidity rates
will be higher with a parasitic disease burden, which ultimately decreases the flock’s
production performance. To overcome the helminths, conventional anthelminthic like
albendazole and some herbs such as neem and pineapple leaves are generally used.
However, the chemical antihelminth is expensive and could be unaffordable to many
farmers in developing countries. Often, the standard dosage of active ingredients on
the label differs from the actual dosage of the active ingredient. In regions where
standards are upheld, these helminthic parasites have evolved resistance to various
anthelmintic, such as benzimidazole, imidazothiazole, and ivermectin (Waller, 2003),
which is a major concern worldwide. Also, despite the presence of many herbs with
potent anthelminthic activity, the nonuniversality of these herbs and possibility of
low financial gain from the economy led to low or limited adoption by global farm-
ing companies. Among these helminths, Haemonchus contortus is a gastrointestinal
nematode that affects small ruminants in tropical, subtropical, and temperate regions.
Tomar and Preet (2017) and Avinash et al. (2017a) have shown that neem-mediated
nanoparticle is more effective than the individual neem or albendazole drug against
helminth. Furthermore, the ICs, and ICy values of neem mediated AgNp were 99.5%
and 97.2% lower than albendazole (Avinash et al., 2017a). This implies that neem-
mediated AgNpis morelethal than albendazole. Another study showed that 1-25 pg/mL
of neem-mediated AgNp resulted in 15%—-85% motility of adult H. contortus,
whereas 200-1200 pg/mL of neem was required to do same, and the ICs, for the
adult mortality was 7.89 pg/mL (Tomar and Preet, 2017). In another study by Preet
and Tomar (2017), the LCsq of Ziziphus jujuba leaf extract biofabricated AgNp was
98.37% lower than the individual leaf extract in raw form. The authors reported that
the nanoparticle worked by altering the egg morphology and depleting the nutrients
(glycogen, lipid, and protein) of adult worms in a range of 5.69%—-21.81%. The low
concentration required by herbal conjugated AgNp suggests the importance of silver
nanoparticles in potentiating the lethal effects of herbal extracts against pathogens
and the development of “nanoherbal medicines.”

Fascioliasis, an infectious parasitic disease caused by liver fluke, tops all zoonotic
helminths globally. The infestation affects various ruminants and pseudoruminants,
including sheep, goats, cattle, buffalo, horses, donkeys, camels, and rabbits. Its preva-
lence could be up to 90% in some zones causing huge animal losses (Farag, 1998).
Triclabendazole is a safe and effective drug of choice against the fluke. However,
there are reports from Australia and Ireland about the inconsistencies in the obtained
results, presumably due to antiparasitic drug resistance (Alvarez-Sanchez et al., 2006).
Despite the resistance, developing a new drug or breaking the resistance mechanism
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of the fluke is essential. In this regard, the efficiency of the established drug could be
improved by employing nanotechnology. Due to the minute-size conjugation of silver
nanoparticle with triclabendazole, this could allow the particle to serve as a carrier of
the drug into the cell membrane, thereby increasing the efficiency. An in vitro report
(Gherbawy et al., 2013) showed that the conjugation of triclabendazole drug with
Trichoderma harzianum biosynthesized silver nanoparticle inhibited the egg hatch-
ability by 89.67% compared to the 69.67% of those hatched under triclabendazole
drug control group. The increased inhibitory activity was due to a pit-like perforation
on the egg surface, which was not observed in the drug alone and untreated group.
This study shows that the silver nanoparticle could be combined with a drug to aid its
quick delivery and enhance efficiency at the target site.

Cystic hydatid disease is a helminth infection and a major neglected cyclozoonotic
disease caused by Echinococcus granulosus in many countries globally (Adibpour
et al., 1998). It is an infection that causes economic and animal protein losses such
as decreased meat, milk, fiber, and mortality of offspring. An invasive method is
practiced to treat this disease, but there are setbacks such as anaphylactic shock,
mortality, and even potential for reoccurrence (Rouhani et al., 2013). Other nonin-
vasive methods such as hypertonic saline, mannitol, chlorhexidine gluconate, Allium
sativum, Sambucus ebulus, and fungal chitosan have been used, but their usage is not
recommended because of low efficacy, high toxicity, and undesirable effects (Rahimi
et al., 2015). Discovering a noninvasive and nontoxic treatment for hydatid cysts is
essential. An in vitro exposure of protoscolices eggs to 0.1-0.15 mg/mL Ag-Nps for
60 and 120 min caused a 79%—-80% and 83%—-90% mortality, respectively (Rahimi
et al., 2015). The liver contains a high residue of nanoparticles after administration
of nanotechnology-based medication. Since liver is the organ that the disease attack,
silver nanoparticles has a great possibility of treating the liver-related ailment. This
suggests that silver nanoparticle could be used against the disease without resort-
ing to an invasive method. Indeed, the Ag-NPs decreased protoscolices by 40% in
10min, even at a lower concentration. Because of the Ag-NPs' strong scolicidal ac-
tivity, they could be projected as an ideal and economical scolicidal agents against
the disease without resorting to an invasive method.

27.6 Ectoparasites (ticks)

Grazing animals, both under semi-intensive and nomadic systems, are infested by
various ectoparasites, which affect their productive efficiency by competing for nu-
trients with the host (Adegbeye et al., 2018). Ticks serve as vectors to various in-
fections such as anaplasmosis, babesiosis, borreliosis, and ehrlichiosis. Because of
the resistance phenomenon, the effectiveness of acaricidal products against several
tick species of tropical and subtropical countries is declining. The residues in meat
and milk are another major concern and discovering new acaricidal product is cost-
intensive (National Research Centre, 1986; Perez-Cogollo et al., 2010; Benelli et al.,
2017). Hence, there is a need to find acaricidal and repellent products to mitigate
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tick resistance. Silver nanoparticles could help in reducing difficulties and ex-
penses related to manufacturing new acaricidal against ticks (such as Rhipicephalus
(Boophilus) microplus, Haemaphysalis bispinosa, and Hyalomma anatolicum).
Further, silver nanoparticles could be projected as a novel strategy against acari-
cide resistance. Another study proved that the neem-coated silver nanoparticles
are toxic to larvae and adult Rhipicephalus microplus ticks (Avinash et al., 2017b).
Additionally, 10 and 25 pg/mL of silver nanoparticles had 100% mortality against the
larvae of Rhipicephalus (Boophilus) microplus and Haemaphysalis bispinosa adults,
respectively (Santhoshkumar et al., 2012; Rajakumar and Rahuman, 2012; Zahir and
Rahuman, 2012), whereas the silver nanoparticles at 50 mg/L of silver nanoparticle
killed 40% (Rhipicephalus (Boophilus) microplus) adults (Johari, 2016).

The resistance against deltamethrin, the most common chemical agent used
against ticks, is widespread and making vector control programs vulnerable.
Hybridizing this drug with silver nanoparticles could provide a synergistic effect
on tick. In this view, Avinash et al. (2017a, b) reported that 50 ppm of deltamethrin
neem-coated silver nanoparticles killed Rhiphicelus microplus larvae, while 360 ppm
of deltamethrin was required for 100% ticks’ mortality. Furthermore, the deltame-
thrin neem-coated silver nanoparticles killed 93.33% of the adults and had 99.16%
oviposition inhibitory activity. In addition, the LCyy and ICqy against both larvae and
adults of R. microplus and for oviposition inhibitory activity were lower than delta-
methrin alone. The tick activity could be controlled using conjugated AgNP-coated
deltamethrin as topical agents by immersion in dip or pour-on sprays.

27.7 Potential application in poultry and hatcheries

The major constraints in livestock production are due to the use of antibiotic feed ad-
ditives, mortality, morbidity, environmental challenges, and vaccine failures. Because
of the lesser contribution of poultry to greenhouse gases, environmentalists endorse
chicken as nonvegetarian protein source compared to beef, carabeef, and pork. Since
the recent past, global warming potential of diet is an alarming concept, and hence,
the poultry market has a great potential for expansion soon. Vaccination is done in
poultry hatcheries and farms to prevent the devastating effects of pathogenic diseases
caused by both bacteria and viruses. Failure of immunization programs due to im-
proper vaccinations may cause huge losses to poultry farmers. Commercial poultry
birds are periodically vaccinated in ovo, orally, or through the wing web against dis-
eases such as infectious bursal disease, fowl pox, Newcastle, Marek’s disease, avian
influenzas, and infectious bronchitis.

Most recently, researchers are developing nanoparticles to challenge viruses by
delivering enzymes that prevent the replication of the virus in the blood system of hu-
mans or livestock (Meena et al., 2018). Infectious bursa disease or gumboro is caused
by a virus and can spread by contact, feces, or contaminated feed. Silver nanopar-
ticles at a concentration of 20 ppm were found to act as both preventive and therapeu-
tic agents by decreasing the growth of IBD virus in embryonated eggs (Pangestika
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et al., 2017). The preventive technique was developed by mixing silver nanoparticle
and IBD virus 2h before inoculation, while therapeutic techniques were developed
by inoculating virus first and then injecting silver nanoparticles 48 h postinfection. In
the preventive methods, the silver nanoparticle prevented the penetration of the virus
into the host cell, while the therapeutic methods inhibited the interaction between
liver nanoparticle and the DNA, consequently hindering the replication of the virus
(Galdiero et al., 2011). Silver nanoparticles could be employed with these methods to
build the immunity in chicks against IBD virus before hatching. Thus, the preventive
and therapeutic application of silver nanoparticles on IBDV may be a novel strategy
to prevent virus replication at an early stage. In addition, Kordestani et al. (2015)
reported SilvoSept® at 4ppm had anti-HINI influenza A virus activity reducing
optical absorption by 99%. Hence, silver nanoparticles could be applied to improve
the biosecurity of poultry ventures (farms and hatchery) to prevent the spread of dis-
eases. In addition, silver nanoparticles could be used to develop vaccines as adjuvant
or in other capacities for these deadly poultry diseases.

Embryonic development is important in the poultry industry as the finishing age
of the commercial broiler is reducing (Goel et al., 2017) due to improved nutrition,
genetic, and consumers demand tender meat. In ovo injection with silver nanopar-
ticles could improve the bird’s growth and immunocompetence of the late-term em-
bryo or post-hatch chicks. Toll-like receptors (TLR-2) and TLR-4 play a key role in
innate adaptive immune systems and recognize the invading pathogens by a series
of pathogen-associated molecular patterns (Beutler, 2004; He et al., 2006). Silver
nanoparticles enhance the vulnerability of macrophages to inflammatory stimula-
tion by activating the specific ligands on the toll-like receptor (Castillo et al., 2008).
Injecting the AgNPs at 12.5, 25, or 50 pg into egg increased the bursal weight, spleen
weight, and hatchability, along with immune parameters such as foot web index and
expression of TLR2 and TLR 4 genes (Goel et al., 2017). Bursa and spleen play im-
portant roles in imparting immunity and elicit cellular and humoral immune response
in chicks. The increased response indicates a better immunological health status in
ovo-injected birds. This improvement in immunity could be through enhanced early
maturation of the immune system and higher phagocytic activity producingmore an-
tibodies against invading pathogens (Goel et al., 2017). Therefore, if the in ovo silver
nanoparticle application can boost the embryo’s immune system, it can enhance the
body’s first line of defense such that there is a reduction in the use of antibiotics for
preventive or therapeutic purposes.

Because of the faster growth rate, leg paralysis is one of the main challenges
in broiler production. Adding nano-Ag to the chicken embryo at 0.25pg Ag/g egg
improved the calcium, iron, and copper content in the embryo skeleton by 3%, 12%,
and 9%, respectively (Sikorska et al., 2010). Furthermore, about 8% of silver nano
was settled in the thigh bone. This shows that silver nanoparticles improve miner-
alization in chicken. Moreover, the ability of the silver nanoparticle in penetrating
and settling in the embryo reveals that the silver nanoparticle could be a potential
carrier of drugs and minerals. Further, the increased copper, iron, and calcium after
AgNano use suggest that the silver nanoparticle can mitigate rickets and brittleness
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of chickens' bone by stimulating the hydroxylapatite formation. A silver nanoparticle
can also improve the hatchability of eggs. Another study reported that injecting silver
nano at 10, 20, or 30 pL/mL into allontoic cavity of eggs increased hatchability by
69%, 75%, and 81%, respectively (Kathiresan et al., 2019).

In hatcheries, formaldehyde is used to fumigate the hatchable eggs before in-
cubation to eliminate pathogenic microbes. However, Chmielowiec-Korzeniowska
et al. (2015) revealed the toxic and carcinogenic nature of formaldehyde. The same
authors attempted to find an alternative to formaldehyde for fumigation and re-
vealed that silver nanoparticles in spray form decreased the pathogenic load and
lowered the residues in visceral organs such as the liver, GIT, and eggshell. Because
of the established antimicrobial activity, silver nanoparticles could be useful to dis-
infect hatchers and eggshell instead of formaldehyde. Silver nanoparticles could
protect the chicken embryo from pathogenic infection as well as support the growth
of a healthy embryo.

27.8 Immunity

The immune system comprises innate (first line of defense) and adaptive responses.
The former is present and mobilized rapidly during infections (Marquardt and Li,
2018). The nuclear factor kB (NF-kB) is a transcriptional factor that plays a key
role in the defense of the organism. The defense mechanisms inlcude proinflamma-
tory pathways and could be activated or stimulated by pathogenic bacteria or their
products (LPS and endotoxins), viruses, and reactive oxygen species (Sawosz et al.,
2010). The phosphorylation of IkB activates NF-kB and releases of P50 and P65
subunit, which binds to genes involved in immune defense activities (D’ Acquisto
et al., 2002). Preinjection of 0.3 mL colloidal Ag nano in ovo at 50 ppm concentration
in eggs challenged with Escherichia coli strain 0111:B4 LPS (0.4 mg/egg) showed
improvement in chicks body weight by 6.5% besides limiting the expression of pro-
inflammatory NF-kB mRNA (Sawosz et al., 2010). The silver nanoparticles, in col-
loidal form, could be used to improve the immune system of chicks so that the chicks
could manage the intestinal microbial imbalance and immune disorders. In stressed
animals, the oxidation stress-led ROS can trigger the translocation of Nrf2, lead-
ing to the production of various antioxidant genes (e.g., sodl, sod2, cat, gclc, gstD,
and gstE) (Nguyen et al., 2009). A study by Mao et al. (2018) found that the use of
AgNPs at lethal and sublethal doses (50 pg/mL) caused damages to the DNA of the
brain and salivary gland and gut apart from the activation of Nrf2-dependent antioxi-
dant pathway, consequently triggering autophagy. Usually, autophagy is induced by
activating Nrf2/antioxidant response element-dependent antioxidant system during
cellular stress or homeostasis or removing misfolded protein and damaged organ-
elles) (Kraft et al., 2010). As such, AgNPs may trigger the body Nrf2-dependent
antioxidant pathway in a time-dependent manner to help an animal when they are
stressed cellularly. Furthermore, caution is advised to limit the high doses, leading to
chronic cumulative effects on the host.
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Injecting Ag-NPs (5 and 10mg/L) at 2.87 and 12.25 mg/bird stimulated the pro-
duction of B lymphocytes, ultimately producing IgA and Ig A immunoglobulins at
95% and 37%, respectively. The study showed exertion of proinflammatory effects
by elevating IL-6 by 125% and increased ESR by 97% (Kulak et al., 2017). This
suggests that AgNPs exert an immunotropic effect on livestock if applied appro-
priately at right doses and appropriate administration methods. The importance of
neutrophils in regulating immune networks and innate defense stresses the impact of
silver nanoparticles on immunoregulation (Fraser et al., 2018). Besides, the phago-
cytic activity of circulating neutrophils is an indispensable defense mechanism of
the immune system. They also play an important role in releasing cytokines and
chemokines, which contribute to modulation of the immune network and responses
(Scapini et al., 2000; Pelletier et al., 2010). Exposing to 20 pg AgNPs/10° cells for
20h triggered the activation and maturation of circulating neutrophils, thereby in-
creasing the key cytokine release including, IL-8, IL-16, and IL-27. However, the
increased cytokine levels did not cause proinflammatory or damaging effects (Fraser
et al., 2018). The above-mentioned effects of silver nanoparticles on immune system
suggest their usage in the veterinary sector to strengthen the immune system and
avoid invading pathogens. However, appropriate dosage and period of contact have
to be established to prevent inflammatory pathogenesis because of inappropriately
recruited or activation of neutrophils (Jorch and Kubes, 2017) (Fig. 27.2).
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27.9 Wound and burn healing

In nations with a transition economy, the usage of animals for carting or ploughing
purpose is common, causing open injuries, sunburns, and other stress-related prob-
lems. Although farmers use herbal extracts or gentian violet to improve the healing
process, those topical medicines could not heal the wounds at a faster rate. Several
swine breeds such as large white, Yorkshire, and Poland China are susceptible to
sunburn, causing an open wound, which may take a long time to heal. Kitsyuk and
Zvyagintseva (2018) found a quick restoration of the normal structure of the epi-
dermis, density index fibroblasts, and reduction in the thickness of the epidermis in
guinea pigs exposed to ultraviolet irradiation and Ag Np-tiotriazolin ointment. In
contrast, untreated groups had a thick epidermal layer, dystrophic changes in epi-
dermocytes and dyskeratosis, increased thickness of fibroblasts and dermis colla-
genization, changes in the content and structure of elastic fibers, and uneven derma
fibrosis along with sclerotic changes. In the future, climate change could increase
the pronocity for sunburn, as such, silver nanoparticle could be applied for quick
healing of the wounds. Salih et al. (2016) showed that olive leaves extract-based sil-
ver nanoparticles promoted the healing of burned wounds. The silver nanoparticles
improved in the formation of a thin epithelial layer in 14 days and reduced the burn
diameter by 94.23%. Similarly, silver nanoparticle was shown to prevent and treat
burn infection wounds faster than established drug-silver sulfadiazine, which is used
globally. Ag Np-aloevera combination (containing 7 cc nanosilver, 0.2 g Aloe vera,
and other materials) increased rate of epidermis re-epithelialization and decreased
the total body surface area affected by burns faster than silver sulfadiazine (Mousavi
et al., 2019). The superiority of silver nanoparticles in healing process compared im-
plies that the herbal-nanoparticle formulation could be promoted as an alternative to
the conventional treatments in livestock. The silver nanoparticles could also be used
to treat certain surgical infectious diseases such as caseous lymphadenitis, a chronic
and potentially zoonotic disease caused by Corynebacterium pseudotuberculosis
bacterium in ruminants small ruminants (Santos et al., 2019).

Surgery is often carried out on animals depending on the disease and discomfort.
Draining and cauterizing the lesions with 10% iodine solution could consume more
time to heal. Hence, other alternatives to hasten the healing process are necessary.
In this regard, Santos et al. (2019) used an ointment formulation based on biogenic
AgNPs mixed with natural waxes and oils. The healing rates of surgical wounds of
goat and sheep treated with silver nanoparticles were 5 and 8 days faster than those
treated with iodine. Further, the wounds treated with silver nanoparticles had less
purulent discharge and lower leukocyte counts and anti-C pseudotuberculosis anti-
body titers. Therefore, it could be concluded that postsurgical treatment of wounds
with AgNP-based ointment may be a promising tool to enhance the healing rate of
surgical wounds. Similarly, Kordestani et al. (2015) showed that rinsing the wound
with SilvoSept® was effective against a wide spectrum of microorganisms and could
be used to rinse wounds as an alternative to iodine-based ointments. The wound
healing activity of AgNPs could be related to the antimicrobial properties and autoin-
flammatory effects, which are implicated in wound-healing responses. Furthermore,
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silver could modulate the cytokines involved in tissue repair (Tian et al., 2007; Vasile
et al., 2020). These nanoparticles could be applied as ointment, spraying, cream, and
powder.

27.10 Antimicrobial activity and synergy of silver
nanoparticles

Antimicrobial resistance to medical and veterinary drugs worldwide is a cause for
concern and one of the greatest threats to human health (Marquardt and Li, 2018).
Also, resistance poses a threat to animal-derived protein security. Affordability, ex-
cessive use, and adulteration of antibiotics has led to increased resistance of patho-
genic gram-positive and gram-negative bacteria to drugs. In addition, accumulation
of antibiotic residues in animal products has resulted in the resistance of transmissible
food pathogens to antibiotics in humans (World Health Organisation (WHO), 2017).
Moreover, the rate at which these microbes generate resistance outcompetes new an-
tibiotics (Vazquez-Mufoz et al., 2019) and biofilm is one of the modes whereby mi-
croorganisms build resistance to antibiotics. Therefore, there is a need for developing
new antibiotics and finding a way to break the resistance of the microbes. Kathiresan
et al. (2019) reported that silver nanoparticles (10-30 pL/mL) were able to inhibit the
biofilm formation of pathogenic microbes.

Nonjudicious utilization of antimicrobial agents causes the spread of resistance,
consequently reducing their efficacy. According to the collected literature, several
pathogens such as Escherichia coli, Salmonella spp., Pasteurella multocida, and
Actinobacillus spp. have shown antimicrobial resistance at different levels. As the
threat of antimicrobial resistance continues to grow globally, the impact of drug re-
sistance could be mitigated by employing combination therapy of different antibiot-
ics or antibiotics with nonantibiotic agents such as silver nanoparticles. Smekalova
et al. (2015) revealed that silver nanoparticles are able to act in synergy with amoxy-
cillin, Penicillin G, gentamicin, and colistin against some resistant microbes like
Staphylococcus aureus, Actinobacillus pleuropneumoniae, Streptococcus uberis,
and Pasteurella multocida. Besides, Tetracycline-conjugated Oscillatoria limnetica
synthesized-silver nanoparticles and cefaxone-conjugated Oscillatoria limnetica-sil-
ver nanoparticles showed higher inhibition zone diameter (26 and 24 mm, respec-
tively) than 19 and 18 mm for cefaxone and tetracycline against E. coli and B. aureus
(Hamouda et al., 2019).

In Nigeria, antibiotics such as tetracycline, penicillin, and gentamycin are used as
either feed additives or injectables in livestock. However, few authors have reported
resistance of pathogenic microbes to antibiotics used in Nigerian livestock sector
(Oluwasile et al., 2014; Nsofor et al., 2013). Despite the antimicrobial properties of
silver nanoparticle, few reports of resistance were observed in some gram-positive
and gram-negative bacteria (Panacek et al., 2018; Jose et al., 2019; Mohammed and
Aziz, 2019). As such, formulating antibiotics to overcome the resistance challenge
is essential. The gram-negative resistance was due to the production of flagellin, a
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flagellum protein, while the same from gram-positive was due to the role of efflux
pump on the cell wall. In a recent study, Khatoon et al. (2019) tested the efficacy of
a nanoformulation involving ampicillin antibiotic (AMP), silver nanoparticles (Ag-
NPs), and a combination of silver nanoparticles and ampicillin antibiotic (AMP-Ag-
NPs). They revealed that the MICy, of AMP-silver nanoparticles against the bacterial
strains was 3-28 pg/mL lower than the AMP (12-720 pg/mL) and synthesized silver
nanoparticles (280-640 pg/mL). Further, the authors revealed no evidence of resis-
tance mechanism on testing the AMP-silver nanoparticles against bacterial strains
in 15 repeated cycles. Hence, hybridizing silver nanoparticle antibiotics could be
done in livestock industries to mitigate the resistance of pathogenic microbes, thus
reducing the morbidity and mortality of livestock suffering from antibiotic-resistant
infections.

Besides, the localized surface plasmon resonance properties of silver nanopar-
ticles make them attractive against antimicrobial-resistant bacterial strains with
excellent antimicrobial activities at lower concentrations (Jose et al., 2019). The pep-
tidoglycans on the cell wall of gram-positive microbes may play a pivotal role in
preventing the cytoplasmic entry of nanoparticles protecting them from cell death.
The coevolution of microbes against antibiotics is of greatest concern over the exces-
sive use of silver nanoparticles. As such, the overuse of silver nanoparticles could
also lead to an evolution in bacteria to make themselves resistant to it. More recently,
Jose et al. (2019) found high toxicity levels of silver-silica nanoparticles to Bacillus
subtilis and Escherichia coli at low concentration (20 pg/mL); however, S. aureus,
a gram-positive bacterium was resistant with only 20% mortality even at 100 pg/
mL concentration. It was observed that gram-positive Bacillus subtilis and S. aureus
maintained 60% and 80% of their respective cell walls within the exposure period.
The authors found that the resistance was due to the role of efflux pump; hence,
inhibiting the efflux pump with calcium channel blockers such as verapamil may fa-
cilitate the entry of silver—silica nanoparticles into the cell, ultimately causing DNA
damage and cell death. Therefore, when treating gram-positive bacteria, an antimi-
crobial formulation of silver nanoparticle could be administered along with efflux
pump inhibitors to breach the cell wall of gram-positive microbes. Furthermore, the
sensible use of silver nanoparticles is essential to prevent the possibility of antimi-
crobial resistance. The combination of antimicrobial agents with silver nanoparticles
could be a promising way to decrease the number of antibiotics used in livestock and
enhance the efficiency of injectable antibiotics at a lower quantity.

27.11 Infectious diseases
27.11.1 Mastitis

In practice, many farmers and veterinarians administer antibiotics and drugs to
overcome mastitis-related illness and death based on previous experience or rec-
ommendation rather than scientifically informed drug prescription. Bovine masti-
tis is an important economic disease that affects cost of milk production and cows
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performance, which greatly decreases milk production. The excessive use of antibi-
otics in cattle leads to antibiotic-resistance of mastitis-causing bacteria. Mastitis is
primarily caused by Staphylococcus aureus, Streptococcus agalactiae, Escherichia
coli, Pseudomonas aeruginosa, Corynebacterium bovis, and Bacillus cereus (Yuan
et al., 2017). Mastitis is a critical threat to the dairy industry because of its devas-
tating effects on animal health, milk production, and the cost of milk production.
Indiscriminate antibiotic usage against mastitis is common in developing nations
such as India; hence, the disease is heavily related to the antibiotic-resistance. As
Staphylococcus aureus is a major pathogen of mastitis prevalence in dairy herds, the
resistance of the bacteria against antimicrobial agents is well-documented. Silver
nanoparticles had MIC values ranging from 1.25 to 10 pg/mL, which inhibited 50%
and 90% of S. aureus by 7min contact time at a concentration of 5 and 10 pg/mL of
silver nanoparticle, respectively (Dehkordi et al., 2011). Furthermore, 11 nm-sized
spherical silver nanoparticles had a MIC of 1 and 2 pg/mL against Pseudomonas
aeruginosa and Staphylococcus aureus, respectively (Yuan et al., 2017).

27.11.2 Tuberculosis

Mycobacterium bovis, the causative agent of bovine tuberculosis, can be respon-
sible for human tuberculosis, thus having zoonotic importance (Allix-Be’guec et al.,
2009). Both M. tuberculosis and M. bovis cause serious tuberculosis infection in
both human beings and animals and have high mortality than any infectious disease.
Large cattle population reported to be infected with bovine tuberculosis worldwide
(WHO, 2010; Selim et al., 2018). Often M. bovis infected cattle are sold even in local
markets, which could be purchased unnoticeably. Consumption of beef with white
sphere-like structures predisposes humans to tuberculosis infection. The antimyco-
bacterial activity of silver nanoparticles against M. bovis, M. tuberculosis H37Rv,
and multidrug-resistant M. tuberculosis inhibited them at MIC of 1, 4, and 16 pg/mL,
respectively (Selim et al., 2018).

27.12 Contaminated/infected water

Contaminated drinking water is another concern for livestock disease burden. For
instance, Cryptosporidium parvum, a major coccidian in contaminated drinking wa-
ter, causes a significant losses in farms due to the higher mortality rate of prerumi-
nant calves, especially those below one month age (Thomson, 2015). Surprisingly,
the oocysts have low infection doses and even resist chlorinated water treatment
(Rose et al., 2002). Silver nanoparticles at 500 pg/mL resulted in 33% excystation
far lower compared to 83% in control, while 5-500 pg/mL of silver nanoparticles
caused 60%—-93% decrease in sporozoite or shell ratio. The excystation process in-
cludes the rupture of oocyst releasing sporozoites that initiate infection in the host
cell. Therefore, it could be assumed that silver nanoparticle prevents infection in host
cells. The impact of silver nanoparticles was due to the ability of Ag ions in breaking
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the cell wall and entering into the oocyst wall, ultimately destroying the sporozoites
(Cameron et al., 2016; Bravo-Guerra et al., 2020). In typical farms of developing
nations, the freshwater sources and the disposed of wastewater from agriculture and
human activities get mixed up through percolation to the groundwater, resulting in a
high pathogenic bacterial population, which indirectly affects livestock production.
A study conducted in India found that 15nm-sized silver nanoparticles had a MIC
for E. coli from farm water at 50 mg/L. Adding 15 nm-sized silver nanoparticles to
the poultry diets improved feed intake and body weight, decreased mortality (4.92%
vs 14.13% in the control group), and the meat was fit for consumption (Kumar and
Bhattacharya, 2019). Therefore, AgNPs can be used as water disinfectant, surface
disinfectant, and therapeutic material in livestock; and aquatic industry (Deshmukh
et al., 2019; Prosposito et al., 2020).

27.13 Biosecurity/disinfection

The ability of silver nanoparticles against many bacteria shows that it could be
used as an antimicrobial agent against many aerosol microbes such that it could be
sprayed as foam and hung between buildings to reduce the exchange of infected air.
These particles could also be used on-farm to minimize the spread of disease as an
aid of biosecurity measures such as spraying and dipping. Combining antimicrobial
agents with silver nanoparticles is a promising way to decrease antibiotic usage in the
extensive livestock production systems. Furthermore, silver nanoparticles can play
an essential role in agriculture and animal production by using sterilization tools and
equipment in animal buildings.

The endospores of Bacillus and Clostridium species are means of transmitting
spore-mediated diseases like anthrax, gas gangrene, botulism, tetanus, food poison-
ing, and pseudomembranous colitis, which are resistant to heat, chemical, and UV
radiation treatment (Nicholson et al., 2000; Aminianfar et al., 2019). A study showed
that 90% of the Bacillus and Clostridium endospores were inhibited with chemi-
cals such as glutaraldehyde (20mg/mL), sodium hypochlorite (0.25mg/mL), and
formaldehyde (5mg/mL) in 25, 20.6, and 11.8 min, respectively (Gopinath et al.,
2016). However, biogenic nanosilver (75 pg/mL) inhibited more than 90% of the
Streptomyces sp. in 20 min. This inhibitory effect of nanosilver at lower concentration
compared to chemical methods could be useful in disinfection of farms during haz-
ardous spores’ epidemic attack or outbreak. Furthermore, silver nanoparticles proved
to be an effective disinfectant by sterilizing cages co-contaminated with opportu-
nistic pathogens—B. cereus and C. difficile at 1x 10° spores. The animals in cages
void of AgNPs had infected lungs, inflammation, submucosa edema, ulceration, and
hyperplasia of the GIT, deformation of hepatic parenchyma, and lympho-monocytic
infiltration around portal vein (Gopinath et al., 2016), whereas no signs of patho-
logical lesions were observed in the rats maintained in nanosilver sterilized cages.
This suggests that sterilizing the cages and livestock houses regularly with nanosil-
ver could improve their biosecurity and enhance animal safety against endospore
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infections. Therefore, nanosilver could be applied as a surface disinfectant against
environmental spores as well as for several theragnostic applications. The nanosilver
adhere to the spore’s coat, leading to pitting formation by denaturing the proteins and
glycosidic bonds of the peptidoglycan N-acetylglucosamine and N-acetylmuramic
acid (Mirzajani et al., 2011; Gopinath et al., 2016; Ismail et al., 2019).

27.14 Mechanism of action

Silver nanoparticles exhibit an array of mechanisms of action involving antimicrobial
activity against bacteria, fungi, and viruses, as antioxidants, nutraceuticals, drug de-
livery systems and immunological responses (Hill and Li, 2017). The silver nanopar-
ticle has various means of action against microbes. The antimicrobial mechanisms
include inactivation of enzymes, change of protein expression, damaged respiratory
chain, production of reactive oxygen species, and increasing the membrane perme-
ability resulting in cytoplasmic leakages and disruption of the cell membrane (Choi
and Hu, 2008; Jin et al., 2010; Hartemann et al., 2015; Wu et al., 2016; Bondarenko
et al., 2018). Besides, there are reports of a compromise of notable organelles in
bacteria causing interruption of transmembrane electron transport (Potbhare et al.,
2019; Eze et al., 2019). Due to the hydrophobic nature of silver nanoparticles, the
nanoparticles interact and alter membrane permeability through cell penetration.
They inactivate and inhibit the lactate dehydrogenase activity leading to increased
leakage of proteins, sugars, and DNA, structural damage, severe disturbance to cell
function, and cell death (Prabhu and Poulose, 2012; Yuan et al., 2017). This mecha-
nism can also be attributed to silver cations, which specifically bind to thiol (-SH)
groups of bacterial proteins by displacing the hydrogen atom to form —S—Ag, thereby
suppressing the enzymatic function of affected protein leading to cell death (Kim
et al., 2011). Most antibiotics are ineffective to inhibit multidrug-resistant (MDR)
bacterial strains. However, silver nanoparticles can eliminate MDR bacteria such
as Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and
Arcanobacterium pyogenes responsible for mastitis, metritis, gastrointestinal, and
respiratory infections in livestock (cattle, sheep, goats, pigs, and horses) by inhibit-
ing the respiratory chain dehydrogenases and generating reactive oxygen species,
thereby affecting ATP synthesis and cellular metabolic process (Gurunathan et al.,
2018). Other means include the variation in the zeta potential on the surface of AgNP
and microbes, synergistic ability of silver nanoparticles with p-lactam antibiotics in
inhibiting hydrolytic -lactamases, and biofilm disruption by inhibiting exopolysac-
charide production (Kalishwaralal et al., 2010; Hwang et al., 2012).

In other words, there are electrostatic forces between the positively charged sur-
face of NP and negatively charged surface of parasites allowing closer attraction and
interaction for its scolicidal activity (Franci et al., 2015; Rahimi et al., 2015). Silver
nanoparticles act in synergy with f-lactam antibiotics by inhibiting the hydrolytic p-
lactamases produced by bacteria, disrupting the biofilm, consequently penetrating the
cell and altering the cellular function (Hwang et al., 2012). The hydrophobic nature
of AgNPs makes it easier for them to pass through cellular membranes and act as a
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carrier for hydrophilic antibiotics (Jamaran and Zarif, 2016). Reports have shown the
ability of silver nanoparticles to exert bactericidal activity through a Trojan-horse
mechanism, a mechanism involved in the cellular uptake of nanoparticles leading to
cellular respiration impairment and release of intracellular metallic toxic silver ion
(Hsiao et al., 2015). The antifasciolasis activity of AgNp when working in synergy
with the established drug is by causing a pit-like structure on egg surface, leading to
penetration of drug and cytoplasmic leakage causing death (Gherbawy et al., 2013).
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The antifungal activity of silver nanoparticles occurs by transcriptional inhibition of

many aflatoxin genes, especially the two key regulatory genes for secondary metabo-
lism, viz., lacA and veA and an associated decrease in total reactive oxygen species
(ROS) (Mitra et al., 2017). The probable mechanism during healing is the increased

blood flow to the wound area and decreased inflammatory response caused by silver

nanoparticles (Li et al., 2006).

Drug solubility and bioavailability are major challenges in medical sector those
need to be solved. Because of the properties, such as small size and the ability to
withstand gastric enzyme and pH, nanoparticles have been used for encapsulation
and targeted delivery of drugs and bioactive (hydrophobic and hydrophilic) com-
pounds. Depending on silver nanoparticles composition and surface modification,
these nanoparticles have been evaluated for their ability to enhance cellular and hu-
moral immunity by increasing the production of lymphocytes, monocytes and neu-
trophils (Al-Rhman et al., 2016). The mechanism of silver nanoparticles in initiation
and regulation of the immune response is not clearly understood, though it is sug-
gested to be attributed to its interaction with macrophages which stimulates upreg-
ulation of proinflammatory genes (interleukin-IL1 and IL6), cytokine release, and
leukocyte recruitment (Shin et al., 2007; Greulich et al., 2009) (Fig. 27.3).
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27.14.1 Nutrient deliveries for fetuses/neonates

Diarrhea is a major cause of loss in neonatal and preweaned livestock. This loss has
economic implications. Administering nanoparticles either orally or intragastrically
in pregnant and lactating mothers, respectively, can lead to accumulation in fetuses
(Lee et al., 2012, 2018; Melnik et al., 2013). These reports indicate the possibil-
ity of nanoparticles to cross natural biological barriers like placenta or blood-brain
barrier and pass from mother to offspring. During the transition from weaning to
solid food in calves or lambs, certain gut microbial profile changes cause an influx
of some pathogenic bacteria leading to diarrhea. The correct application of silver
nanoparticles as a carrier of drugs or additives in the dam could be used as a medium
of stabilizing the gut microbial community, thereby preventing disruption or gut mi-
crobial imbalance through breast milk. Pregnancy is important to all livestock opera-
tions as it represents the next generation of milk and meat-producing animals. At this
stage, the cellular and hormonal system of offspring will be established and maternal
nutrition can have an indelible influence on the lifetime productivity and health of
progeny, which could enhance or limit productivity and efficiency (Greenwood et al.,
2017). During mid to late pregnancy, the dam undergoes physiological changes to
help maintain the increase in metabolic demand (Lemley, 2017). Abnormality at this
stage can increase the risk of morbidity and mortality during the early neonatal stage
(Sawalha et al., 2007) and other lifelong complications and developmental disabili-
ties (Reynolds et al., 2013). The placenta helps in transporting nutrients between the
mother and fetus, and this transfer is vital specifically in the growth and development
of the fetus during the last half of gestation (Redmer et al., 2004). Size and nutrient
transporter abundance are important factors affecting placental nutrient transfer ca-
pacity (Fowden et al., 2006). Due to its size and ability to cross the barrier, nanosil-
ver can be designed to transport therapeutic supplements that could improve fetal
growth, increase the average body weight at birth, and improve the chance of survival
of offspring. Producers can use nanoparticle features as a specific strategy to improve
reproductive efficiency of livestock (Lemley, 2017). Particularly, nanoparticles could
be used to deliver drugs or vaccines to a fetus during growing epidemic regions.

27.14.2 Potential side effects

Many drugs used in both human beings and animals show some side effects, either
mild or severe. For example, application of 50ppm AgNP through drinking water
reduced the growth and modulated the immune functions (Vadalasetty et al., 2018).
Injecting nanosilver particles could cause lesions in liver and lungs by damaging
the tissue (Doudi and Sertoki, 2014; Loghman et al., 2012). Application of nanosil-
ver through drinking water reduced the yolk weight and hen-day egg production of
Japanese quail layers (Farzinpour and Karashi, 2013).

Furthermore, oral subchronic exposure to silver nanoparticles for 13 days de-
creased the expression of immunomodulatory genes and altered microflora of il-
eal mucosa shifting the population towards gram-negative microbes, i.e., lowered
Firmicutes phyla and Lactobacillus genus (Williams et al., 2015). Oral administration
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of silver nanoparticles at 0.5, 1.0, and 1.5mg/kg BW showed a dose-dependent re-
duction in absorption of minerals such as K and Fe (Ognik et al., 2017). Intravenous
administration of silver nanoparticles at 0.6 mg/kg BW reduced the sperm concentra-
tion in the first 21 days and had a similar effect to the control for the later 126 days
period. However, the nanoparticles reduced sperm motility and sperm speed while
increasing the sperm anomalies (Castellini et al., 2014). The aforementioned phe-
nomena imply that silver nanoparticle has several negative effects on functions re-
lated to reproduction, mineral absorption, and metabolism.

The antimicrobial resistance phenomenon necessitates the precise use of nanopar-
ticles according to the purpose. Further, we suggest investigation into other route of
administration of nanoparticles that ensure minimal negative effects.

27.15 Conclusion

The use of silver nanoparticles as antimicrobial compounds possesses great potential-
ity in the animal husbandry sector. Despite the beneficial antimicrobial activity, silver
nanoparticles pose negative effects on the environment due to the chemicals involved
in the synthesis. Hence, green synthesis methods are most commonly encouraged
nowadays. A silver nanoparticle can help overcome the resistance of disease-causing
organisms by working in synergy with these established drugs and reducing the cost
of developing a new drug. Nanoparticles could be used in fetal programing as deliv-
ery agents to immunity enhancement or delivery of mineral to a growing fetus. The
wound healing properties of AgNp is outstanding as it aids quick healing of surgery
wound and could be applied for healing of sunburn. The immunomodulatory function
through the maturation of neutrophils and increased cytokine production is well evi-
denced. Overall, the diverse roles of silver nanoparticles in animal husbandry sector
include, but not limited to, wound healing agents, health promoters, vaccine carri-
ers, growth promoters, immunostimulants, synergic agents, and microbial-resistance
preventive agents. However, projecting the silver nanoparticles as complete feed ad-
ditives for livestock need extensive research, which is lacking at present. Similarly,
the selecting appropriate dosages needs to be further studied by conducting a meta-
analysis of all the data available on the usage of silver nanoparticles. Thus, the silver
nanoparticle has excellent potentials for various veterinary applications.
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