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INTRODUCTION 
 

According to various international institutions, antimicrobial 
resistance (AMR) is such a severe problem that, within 30 
years, it could cause the death of more people than those 
affected by chronic problems such as cancer. The World 
Health Organization indicates that (World Health 
Organization, 2015), that AMR is responsible for up to 700 
000 deaths worldwide, which could increase up to 10 
million deaths annually. In the United States of America, up 
to 2 million people contract infections associated with AMR 
bacteria annually leading to the death of almost 23,000 
people (Dadgostar 2019). AMR affects not only mortality 
but also morbidity. It triggers a high economic burden and 
more extended periods of hospitalization and on a large 
scale, it causes economic losses in healthcare systems 
worldwide (Shrestha et al. 2018; Christaki et al. 2020). 
Statistics show that in 30 years, there may be a reduction of 
up to three percent of the Gross Domestic Product due to 
antimicrobial resistance, impacting the world with a loss of 
up to $100 billion. (Shrestha et al. 2018; Dadgostar 2019). 
However, these data might be underestimated, as they only 
consider a subset of drug-resistant bacteria due to the lack of 
available data on emerging resistant bacteria (Rodríguez-
Medina et al. 2019).  
When bacteria escape the drug's effect due to the 
development of cellular mechanisms of response to the 
aggression, it is reffered as antibiotic resistance (Jubeh et 
al. 2020). One of the operational definitions of 
antimicrobial resistance indicates that a strain has 
antimicrobial resistance if its minimum inhibitory 
concentration is higher than that exhibited by its similar 
wild-type strain (Martínez et al.  2015). 

Each antimicrobial agent has a unique mode of action that 
depends on two fundamental aspects which include bacterial 
cell characteristics and antibiotic targets. Regarding 
bacterial cell characteristics, differences are distinguished 
between Gram stain-positive and Gram stain-negative 
bacteria. Although the structures of both are similar, there 
are some critical discrepancies. Gram-negative bacteria 
possess an outer membrane that confers resistance to a high 
number of antibiotics as it is one of the main targets of their 
mode of action (Assoni et al. 2020). Alterations in their 
hydrophobicity properties and changes in porins or 
lipopolysaccharides contribute to the potential for resistance 
(Jubeh et al. 2020). 
Gram-positive bacteria lack an outer membrane but the 
presence of thick peptidoglycan layers dominates their 
anatomy. Lacking the outer membrane, they are more 
sensitive to the effect of antibiotics. That is why Gram 
stain-negative species show a higher frequency of 
resistance and are resistant to more antibiotics (Jubeh et al. 
2020). Some agents act against both types of bacteria. 
These are known as broad-spectrum antimicrobials 
(Bearden and Danzinger 2001). 
Antimicrobial agents can interfere with cell wall synthesis, 
protein synthesis, nucleic acid synthesis or inhibit a 
metabolic pathway. Bacteria, for their part, counteract these 
effects through mechanisms such as 1- intrinsic resistance, a 
natural property of each bacterial group; 2- acquired 
resistance, a trait that is a direct function of bacterial genetic 
variability and may be due to mutations and horizontal gene 
transfer; 3- Genetic changes in DNA, also called mutational 
resistance, involve modification of the drug's mode of 
action, e.g., decreased absorption, activation of exit 
mechanisms to extradite the harmful molecule or global 
changes in critical metabolic pathways; and 4- horizontal 
gene transfer (transformation or conjugative transduction) 
(Munita and Arias 2016). 
Microorganisms possess intrinsic resistance to one or more 
antimicrobials naturally. The problem occurs when they 
generate acquired resistance in clinical settings, which 
causes a bacterial population that was initially susceptible to 
an antimicrobial to subsequently no longer be so, causing 
morbidity and mortality (Paterson 2006; Ruppé et al. 2015 
2015; Jubeh et al. 2020).  

 

Causes of Antibiotic Resistance 

 

Intrinsic resistance has been well known since the discovery 

of penicillin. Before its use, the first resistant strains of 
Staphylococcus had already been described. Subsequently, 

methicillin  was introduced, and soon after, a resistant strain 
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was reported (Sengupta et al. 2013) and to counter its 
ineffectiveness, vancomycin was introduced and after two 

decades later, Staphylococcus resistant was reported 
(Barberato-Filho et al. 2020). 

Enabling elements for acquired resistance include misuse 
and overuse of antibiotics (Zaman et al. 2017; Chokshi et 

al. 2019; Dadgostar 2019), agricultural use (Chang et al. 
2015), rising income levels conducive to overconsumption 

(Chaw et al. 2018; Klein et al. 2018), travel routes 
exposing humans to resistant pathogens and their 

dissemination in various countries, as well as lack of 
knowledge creating a gap in awareness of antibiotic use 

globally (Frost et al. 2019). 
For this reason, international bodies have launched 

guidelines that aim to help and safeguard the efficacy of 
antimicrobials (WHO, 2015, 2022; McEwen and Collignon 

2018). The World Health Organization (WHO) classified 
AMR bacteria that posing an imminent threat to human 

health (De Oliveira et al. 2020) and published a list of 
priority pathogens that require urgent research and 

development of new treatments (WHO 2017). 

 

Priority Bacteria with Antibiotic Resistance 

 
The critical priority group includes multidrug-resistant 
bacteria that are of great attention because they affect 

hospitalized patients requiring devices such as catheters and 
ventilators. The high and medium priority categories contain 

bacteria with increasing drug resistance (WHO 2017) as 
mentioned in Table 1. 

In addition to the priority resistance determined by the 
WHO, the bacteria included in the list present resistance 

profiles to other drugs, which shows their capacity to 
develop diverse resistance mechanisms. Within this list, we 

can locate a group of pathogens with a high capacity to 
escape the antimicrobial effect under the acronym 

"ESKAPEE": Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa, Enterobacter spp. and 
Escherichia coli (Arato et al. 2021; Mancuso et al. 2021) as 

mentioned in Table 2. 

 

New Bacterial Species Resistant to Antibiotics 

 
The evolution of antimicrobial resistance and its spread and 

appearance in diverse ecosystems is due, among other 
factors, to the interconnection between animal, human and 

environmental habitats. The spread of resistant clones and 
antibiotic resistance determinants has been described among 

microorganisms that previously did not exhibit this 
characteristic. From this derives the concept of "emerging 

antibiotic-resistant pathogens," defined as those 
microorganisms that have recently developed antibiotic 

resistance, affecting a population by rapidly increasing their 
incidence or geographic range (Vouga and Greub 2016). 

Among these, we can find the following: 

Klebsiella variicola 

 
It is found within the Klebsiella pneumoniae complex and in 

2004, it was described as a new species (Wyres et al. 2020). 
Its natural niches are plants; however, the most current 

reports show an increasing incidence of strains of clinical 
origin with AMR (Rivera-Galindo et al. 2021), implicating it 

in bacteremias, infections of the respiratory system, and 

urinary tract infections in humans. Therefore, it is considered 
as an emerging pathogen (Srinivasan and Rajamohan 2020). 

One of the main variables to consider when studying 

antibiotic-resistant strains is the correct identification of the 

strain to be able to carry out an adequate epidemiological 

follow-up. In the case of Klebsiella (K.) variicola, the 

biochemical tests routinely used in the clinical microbiology 

laboratory or automated systems worldwide has resulted in 
its misclassification as K. pneumoniae. (Long et al. 2017; 

Fontana et al. 2019; Piepenbrock et al. 2020; Kiley et al. 

2021; Rivera-Galindo et al. 2021). Derived from this, there 

is scarce data on its susceptibility patterns, epidemiological 

characteristics of distribution in the population, and its 

actual clinical implications (Rodríguez-Medina et al. 2019). 
The few existing reports indicate that it is intrinsically 

resistant to ampicillin due to the chromosomal LEN β-

lactamase (Rodríguez-Medina et al. 2019; Morales-León et 
al. 2021). It is a carbapenemase-producing species. It is 

resistant to ertapenem, meropenem and imipenem 
(Hopkins et al. 2017). Recently, its resistance to colistin, 

mediated by chromosomal mechanisms, was reported 
(Jayol et al. 2017; Lu et al. 2018). Likewise, there is 

evidence of horizontal gene transfer between members of 
the complex as they have been found to share plasmids, 

which favors the spread of AMR genes. Because of this, 
accurate identification is essential (de Campos et al. 2021). 

 

Mycobacterium abscessus 
 

It is a fast-growing, multidrug-resistant, nontuberculous 

mycobacterium species that has recently become a 
significant threat to people with chronic lung conditions 

(Bryant et al. 2021). Infection rates caused by this species are 
increasing globally, likely due to its dispersal via aerosols 

and spread through fomites (Bryant et al. 2016). Its intrinsic 
resistance mechanisms are due to a highly impermeable cell 

envelope, multidrug exit pumps, and the ability to encode 
several enzymes that can inactivate antibiotics (Nessar et al. 

2012; Luthra et al. 2018; Gorzynski et al. 2021). 
Due to extensive, repeated, or inappropriate use of 

antimicrobials, most strains of this species are resistant to 
macrolides due to the expression of an erythromycin 

ribosome methylase gene (erm) (Nessar et al. 2012; Luthra 
et al. 2018; Lopeman et al. 2019). They are also resistant to 

aminoglycosides, due to the presence of a mutation in the rrs 
gene responsible for coding for the 16S rRNA (Johansen et 

al. 2020). They are resistant to beta-lactams due to the 
presence of class A beta-lactamase.  
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Table 1: Priority bacteria with antibiotic resistance, according to WHO (2017) 

Priority level  Name  Priority resistance 

Critic Acinetobacter baumannii,  Carbapenem-resistant 

Pseudomonas aeruginosa,  Carbapenem-resistant 
Escherichia coli Carbapenem-resistant, extended-spectrum beta-lactamase (ESBL)-producing 

carbapenemics Klebsiella pneumoniae 
Enterobacter sp 

High Enterococcus faecium Vancomycin-resistant 
Staphylococcus aureus Methicillin-resistant, with intermediate sensitivity and vancomycin resistance 
Helicobacter pylori Resistant to clarithromycin 
Campylobacter spp Resistant to fluoroquinolones 

Salmonellae Resistant to fluoroquinolones 
Neisseria gonorrhoeae Cephalosporin-resistant, fluoroquinolone-resistant 

Medium  Streptococcus pneumoniae Penicillin resistant 
Haemophilus influenzae Ampicillin resistant 
Shigella spp Resistant to fluoroquinolones 

 
Table 2: Resistance characteristics of bacteria named ESKAPEE (De Oliveira et al. 2020) 

Priority 
level  

Name  Priority resistance  Resistance to other 
antimicrobials  

Mechanism of resistance   Reference   

High  Enterococcus 
faecium 

Vancomycin Ampicillin, penicillin, 
cephalosporins, 
vancomycin and 
aminoglycosides such 
as tobramycin, 
kanamycin, 

gentamicin, and 
fluoroquinolones. 

Chromosomal gene pbp5 encodes a 
class B penicillin-binding protein, 
aminoglycoside-modifying enzymes, 
enzyme modification, and ribosomal 
target modification. 

(Emaneini et al. 2008; 
Cattoir and Giard 2014; 
Novais et al. 2016; 
Gorrie et al. 2019). 

High  Staphylococcus 
aureus 

Methicillin, with 
intermediate 
sensitivity and 
resistance to 
vancomycin. 

Fluoroquinolones  Plasmid-encoded penicillinase, 
penicillin-binding protein, a mutation in 
genes encoding target enzymes for 
DNA replication 

(Chambers and Deleo 
2009; Tanaka et al. 
2000) 

Critical  Klebsiella 

pneumoniae 

Carbapenemics and 

extended-spectrum 
beta-lactamase 
producer. 

Multiresistant Plasmid accessory genomes and 

chromosomal gene loci 

(Cifuentes-Castaneda et 

al. 2018; Nakamura-
Silva et al. 2022) 

Critical  Acinetobacter 
baumannii,  

Carbapenemics Tigecycline, 
aminoglycosides, 
colistin 

Production of four β-lactamases (A, B, 
C, D) exit pumps, three classes of 
enzymes, including acetyltransferases, 
adenylyltransferases, and 
phosphotransferases, and loss of 

lipopolysaccharide. 

(Lee et al. 2017; 
Trebosc et al. 2019; De 
Oliveira et al. 2020) 

Critic  Pseudomonas 
aeruginosa 

Carbapenemics  Multidrug resistant  Overexpression of exit pumps and 
decreased outer membrane 
permeability, genes encoding for porins 
and other protein β-lactamases class A, 
C, and D, aminoglycoside-modifying 
enzymes.  

(Langendonk et al.  
2021; Mancuso et al. 
2021) 

Critic  Enterobacter sp Carbapenemics and 
extended-spectrum 

beta-lactamase 
producer 

Fluoroquinolones and 
aminoglycosides 

β-lactamases type A and type B. (Davin-Regli et al. 
2019) 

Critic Escherichia coli Carbapenemics and 
extended-spectrum 
Beta-lactamase 
producer 

Broad-spectrum 
cephalosporins, 
polymyxins, 
Fluoroquinolones  

Carbapenemases aminoglycoside, 16S 
rRNA methylases, mcr genes. 

(Raphael et al. 2021; 
Wu et al. 2021; 
Rodríguez-Avial et al. 
2013; Jayol et al. 2017; 
Sadecki et al. 2021). 

 
They also show resistance to tetracyclines due to enzymatic 
inactivation by flavine-adenine dinucleotide inactivator 

monooxygenase (Nessar et al. 2012; Ananta et al. 2018; 
Luthra et al. 2018; Victoria et al. 2021). As for 
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fluoroquinolones, their resistance to these compounds is due 
to a mutation in the quinolone resistance determinant region 
(Johansen et al. 2020).  

 

Staphylococcus xylosus 

 
It is a coagulase-negative Staphylococcus that is implicated 

in animal infections. However, due to the reports of its 

ability to produce infections in humans; it is considered an 

emerging pathogen (Qu et al. 2021). 

Human infections include brain abscesses, pyelonephritis, 
endocarditis, and septicemia. In addition, it is increasingly 

reported as a nosocomial infection-producing species. At the 

clinical level, it is possible to detect its resistance to 

macrolides, and it has been determined that this is due to the 

presence of the erm gene (Yuan et al. 2021). 

Multidrug-resistant strains can also be found, i.e., with 

resistance to several families of antibiotics. We can consider 

in this sense that it presents resistance to lincosamide, 

tetracyclines, and aminoglycoside. There is little 

information on this species and its novel multidrug 

resistance, so accurate identification and monitoring should 

be corroborated with current epidemiological data (Wipf et 
al. 2017). 

 

Elizabethkingia anophelis 

 
This species is associated with human diseases, especially 

neonatal nosocomial outbreaks and increasing incidence of 
bacteremia and mortality (Huang et al. 2017). Recently, it 

has been a leading cause of life-threatening infections in 

Hong Kong, the United States, and Taiwan (Spurbeck and 

Arvidson 2010; Lau et al. 2016; Perrin et al. 2017; Choi et 

al. 2019; Wang et al. 2019). It is considered as an emerging 

opportunistic pathogen and is often misdiagnosed because 

automated identification systems routinely used at the public 

health service level lack sufficient data for its detection (Lin 

et al. 2018). 

It is intrinsically resistant to many antimicrobial agents 

commonly used to treat Gram-negative infections, such as 
carbapenem, cephalosporins, and colistin. It was recently 

reported to exhibit resistance to at least 20 antibiotics due to 

genes encoding different beta-lactamases and efflux pumps 

(Wang et al. 2019). Isolates are usually resistant to 

cephalosporins, carbapenemics, aminoglycosides, 

fluoroquinolones, and vancomycin (Teng et al. 2021). 

Mutations in quinolone resistance determinant regions and 

amino acid alterations have been detected to be associated 

with levofloxacin resistance (Jian et al. 2018; Lin et al. 

2018). 

 

Escherichia fergusonii 

 
It was classified in 1985 as a new species (Farmer et al. 

1985). It is an opportunistic pathogen initially associated 

with septicemia and diarrhea in animals but is now 

associated with abdominal wounds, urinary tract infections, 

and bacteremia in humans (Tang et al. 2022). Recent reports 

consider it a species of great importance because it 

frequently affects neonates in intensive care units (Rivera-
Galindo et al. 2021). Phenotypic methods generally identify 

it as E. coli; becauseat the epidemiological level, there is an 

underreporting of pathogenic microorganisms and that 

effective methods for their detection and treatment are not 

developed (Tang et al. 2020; Rivera-Galindo et al. 2021).  

Escherichia (E.) fergusonii emerges as a microorganism of 

concern due to its potential for multidrug resistance. It is a 

producer of broad-spectrum beta-lactamases resistant to 

carbapenems (Tomilola et al. 2019). In 2016, a plasmid-

borne resistance gene was identified as the primary factor 

contributing to its colistin resistance (Zhi et al. 2016; Wang 

et al. 2018; Tang et al. 2020; Liu et al. 2022).  
Importantly, there is very little information on the 

pathogenic potential of this species in humans. However, 

information on its resistance mechanisms to strains isolated 

from animals is high; so, we can consider it an emerging 

zoonotic pathogen (Tang et al. 2020; Guan et al. 2022; Liu 

et al. 2022; Shah et al. 2022; Tang et al. 2022). As 

addressed above, the interconnectedness between human, 

animal and environmental habitats is conducive to the 

emergence, evolution, and spread of resistance, so the 

evolution of this species and those described above should 

be closely monitored.  

 

Conclusion 

 
Since many studies and clinical practice continue to rely on 

traditional methods based on bacterial culture and 

automated systems to identify nosocomial antibiotic-
resistant microorganisms, it is imperative to show the 

incidence of new resistant bacterial species emerging as 

potential health problems. With this information, reference 

databases can be updated, and the need to migrate towards 

molecular techniques for accurately identifying emerging 

microorganisms which can be evidenced whenever possible. 

The increasing presence of antibiotic-resistant pathogenic 

species shows the need to minimize the use of inappropriate 

antimicrobial therapies as they represent risk factors for 

morbidity, mortality, and economic impact related to health 

care. If bacteria are accurately identified, epidemiological 

and clinical studies can make significant advances so that, in 
the short term, clinicians can prescribe targeted antibiotics 

that promote the reduction of antimicrobial resistance. 
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