2.- Teoría de probabilidades

La **teoría de probabilidades** se ocupa de **asignar** un cierto **número** a cada **posible resultado** que pueda ocurrir en un **experimento aleatorio**, con el fin de cuantificar dichos resultados y saber si un suceso es más probable que otro. Con este fin, introduciremos algunas **definiciones**:

Suceso

Es cada uno de los resultados posibles de una experiencia aleatoria.

Al lanzar una moneda salga cara.

Al lanzar una moneda se obtenga 4.

Espacio muestral

Es el conjunto de todos los posibles resultados de una experiencia aleatoria, lo representaremos por E (o bien por la letra griega Ω).

Espacio muestral de una moneda:

$$E = \{C, X\}.$$

Espacio muestral de un dado:

$$E = \{1, 2, 3, 4, 5, 6\}.$$

Suceso aleatorio es cualquier subconjunto del espacio muestral.

Por ejemplo al tirar un dado un suceso sería que saliera par, otro, obtener múltiplo de 3, y otro, sacar 5.

EjemploUna bolsa contiene bolas blancas y negras. Se extraen sucesivamente tres bolas. Calcular:

1. El espacio muestral.

$$E = \{(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n,b); (n,n,n)\}$$

2. El suceso A = {extraer tres bolas del mismo color}.

$$B = \{(b,b,b); (n, n,n)\}$$

3. El suceso A = {extraer al menos una bola blanca}.

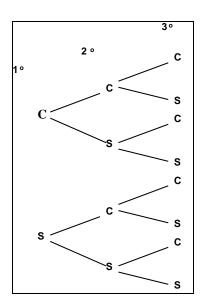
$$B = \{(b,b,b); (b,b,n); (b,n,b); (n,b,b); (b,n,n); (n,b,n); (n,n,b)\}$$

4. El suceso A = {extraer una sola bola negra}.

 $A = \{(b,b,n); (b,n,b); (n,b,b)\}$

El lenguaje de Probabilidades

Definición:


Un **experimento aleatorio** es un proceso (repetible) cuyo resultado no se conoce de antemano.

Si se repite un experimento aleatorio bajo las mismas condiciones y anotamos las frecuencias relativas de un suceso. Observaremos que estas tienden a estabilizarse alrededor de un número que está entre cero y uno. Este valor recibe el nombre de **probabilidad.**

Espacios Muestrales y Eventos

Sea el experimento aleatorio = lanzar una moneda tres veces

Podemos contar el número de resultados posibles de este experimento con un diagrama de árbol:

o escribir los resultados como un conjunto: $S = \{CCC, CCS, CSC, CSS, SCC, SCS, SSC, SSS\}$

Definición:

Un **espacio muestral** es el conjunto de todos los valores posibles de un experimento aleatorio.

☑ Escriba el espacio muestral S para los siguientes experimentos:

- a) Lanzar una moneda y se observa el lado visible
- b) Lanzar dos dados y se registra los números que aparecen en cada dado:

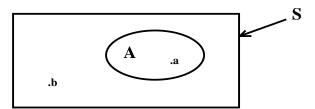
$$S = \{ (1,1) \quad (1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad (1,6)$$

$$(2,1) \quad (2,2) \quad (2,3) \quad (2,4) \quad (2,5) \quad (2,6)$$

$$(3,1) \quad (3,2) \quad (3,3) \quad (3,4) \quad (3,5) \quad (3,6)$$

$$(4,1) \quad (4,2) \quad (4,3) \quad (4,4) \quad (4,5) \quad (4,6)$$

$$(5,1) \quad (5,2) \quad (5,3) \quad (5,4) \quad (5,5) \quad (5,6)$$


$$(6,1) \quad (6,2) \quad (6,3) \quad (6,4) \quad (6,5) \quad (6,6) \quad \}$$

- c) Lanzar dos dados y anotar la suma de los valores:
- d) Tomar una muestra aleatoria de tamaño 10 de un lote de piezas y contar cuantas tienen defectos.
- e) Seleccionar aleatoriamente un estudiante y anotar el tiempo que estudió estadística en las últimas 24-horas.
- f) El tiempo que espero la llegada de la micro en el paradero

Definición: Un **evento** es cualquier subconjunto del espacio muestral S.

Se dice que un evento A ocurre si cualquiera de los elementos o resultados en A ocurren.

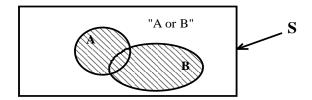
Habitualmente se usan los diagramas de Venn, de la teoría de conjuntos, para visualizar el espacio muestral y los eventos.

$$S = \{ (1,1) \quad (1,2) \quad (1,3) \quad (1,4) \quad (1,5) \quad (1,6)$$

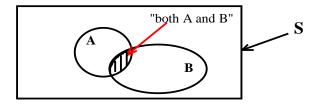
$$(2,1) \quad (2,2) \quad (2,3) \quad (2,4) \quad (2,5) \quad (2,6)$$

$$(3,1) \quad (3,2) \quad (3,3) \quad (3,4) \quad (3,5) \quad (3,6)$$

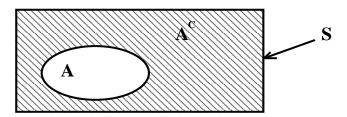
$$(4,1) \quad (4,2) \quad (4,3) \quad (4,4) \quad (4,5) \quad (4,6)$$


$$(5,1) \quad (5,2) \quad (5,3) \quad (5,4) \quad (5,5) \quad (5,6)$$

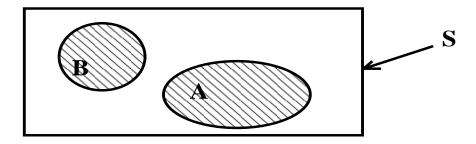
$$(6,1) \quad (6,2) \quad (6,3) \quad (6,4) \quad (6,5) \quad (6,6) \quad \}$$


Marque los resultados que corresponden a los siguientes eventos:

- a) Evento A = "No sale seis"
- b) Evento B = "Sale exactamente un seis"
- c) Evento C = "Salen exactamente dos seis"
- d) Evento D = "Sale al menos un seis"


La **unión** de dos eventos, representada por "A o B", se denota por: $A \cup B$

La **intersección** de dos eventos, representado por "A y B", se denota por: $A \cap B$



El **complemento** de un evento, representado por "no A", se denota por: A^{C}

Definición:

Dos eventos A y B son *disjuntos* o *mutuamente excluyentes* si no tienen elementos en común. Así, si un evento ocurre, el otro *no puede* ocurrir.

☑¿Mutuamente excluyentes?

En cada caso, determine si la siguiente lista de eventos son mutuamente excluyentes:

a) Un vendedor hace una venta:

A = "la venta excede \$5 mil pesos"

B = "la venta excede \$50 mil pesos"

b) Un vendedor hace una venta:

A = "la venta es de menos de \$5 mil pesos"

B = "la venta es de entre \$10 mil y \$50 mil pesos"

C = "la venta es de más de \$100 mil pesos"