

FUNDAMENTALS OF ROBOTICS

Ingeniería en Computación

UDA: FUNDAMENTOS DE ROBÓTICA

TEMA: INTRODUCCIÓN A LA ROBÓTICA

ELABORÓ: DR. EN C. HÉCTOR RAFAEL OROZCO AGUIRRE CU UAEM VM

PROGRAMA DE ESTUDIO POR COMPETENCIAS FUNDAMENTOS DE ROBOTICA

I. IDENTIFICACIÓN DEL CURSO

Valle de México, Valle de Teotihuacán, Zumpango)

Licenciatura: Licenciatura de Ingeniería en Computación				Área de docencia: Interacción Hombre-Máquina			
Año de aproba	ción por el Conse	ejo Universitario:					
Aprobación por los H.H. Consejos Académico y de Gobierno		Fecha:		Programa elaborado por: Adriana H. Vilchis González Fecha de elaboración : 20 Septiembre		Programa revisado por: e del 2009	
Clave	Horas de teoría	Horas de práctica	Total de horas	Créditos	Tipo de curso	o Núcleo de formación	
L41067	2	1	3	5	Curso	Sustantivo	
Unidad de Aprendizaje Antecedente Ninguna				Unidad de Aprendizaje Consecuente Ninguna			

FUNDAMENTALS OF ROBOTICS

Image taken from http://www.cra.org/ccc/visioning/visioning-activities/robotics

ROBOTICS FIRST TIMELINE

- 1922 Czech author Karel Capek wrote a story called Rossum's Universal Robots and introduced the word "Robota" (meaning worker, labor doing compulsory manual works without receiving any remuneration).
- 1954 George Devol developed the first programmable Robot.
- 1955 Denavit and Hartenberg developed the homogenous transformation matrices
- 1962 Unimation was formed, first industrial Robots appeared.

WHAT IS A ROBOT?

- Random House Dictionary A machine that resembles a human being and does mechanical routine tasks on command.
- Robotics Association of America An industrial robot is a re-programmable, multifunctional manipulator designed to move materials, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.

WHAT IS A ROBOT?

- Oxford dictionary A machine resembling a human being and able to replicate certain human movements and functions automatically.
- Today's robots are a combination of manipulative, perceptive, communicative, and cognitive abilities. Today's robots are capable of so many tasks. Yet, there is so much more on the horizon.

WHAT IS A ROBOT?

- A manipulator (or an industrial robot) is composed of a series of links connected to each other via joints. Each joint usually has an actuator (a motor for eg.) connected to it.
- These actuators are used to cause relative motion between successive links. One end of the manipulator is usually connected to a stable base and the other end is used to deploy a tool.

TO QUALIFY AS A ROBOT

- A machine must be able to:
 - Sensing and perception: get information from its surroundings.
 - Carry out different tasks: Locomotion or manipulation, do something physical-such as move or manipulate objects.
 - Re-programmable: can do different things in different ways.
 - Function autonomously and/or interact with human beings.

ROBOTS ARE HARD TO DEFINE

• As the field of robotics rapidly progresses it is not necessarily a bad thing that everyone has not agreed on a universal definition for a robot:

- Robots are likely to outgrow any definition placed upon them.
- Perhaps Joseph Engelberger, father of the industrial robot, summed it up best when he said: "I may not be able to define one, but I know one when I see one."

HOLLYWOOD'S ROBOTS

LAWS OF ROBOTICS

- Isaac Asimov proposed the following three Laws of Robotics:
 - Law 1: A robot may not injure a human being or through inaction, allow a human being to come to harm.
 - Law 2: A robot must obey orders given to it by human beings, except where such orders would conflict with a higher order law.
 - Law 3: A robot must protect its own existence as long as such protection does not conflict with a higher order law.

Image taken from http://www.therobotspajamas.com/book-report-i-robot/

CLASSIFICATION OF ROBOTS

- JIRA (Japanese Industrial Robot Association):
 - Class1: Manual-Handling Device
 - Class2: Fixed Sequence Robot
 - Class3: Variable Sequence Robot
 - Class4: Playback Robot
 - Class5: Numerical Control Robot
 - Class6: Intelligent Robot

CLASSIFICATION OF ROBOTS

• RIA (Robotics Institute of America):

- Variable Sequence Robot (Class3): A device that performs the successive stages of a task according to a predetermined method easy to modify.
- Playback Robot (Class4): A human operator performs the task manually by leading the Robot.
- Numerical Control Robot (Class5): The operator supplies the movement program rather than teaching it the task manually.
- Intelligent Robot (Class6): A robot with the means to understand its environment and the ability to successfully complete a task despite changes to the environment.

CLASSIFICATION OF ROBOTS

- AFR (Association FranÇaise de Robotique):
 - Type A: Manual Handling Devices/ telerobotics
 - Type B: Automatic Handling Devices/ predetermined cycles
 - Type C: Programmable, Servo controlled robot, continuous pointto-point trajectories
 - Type D: Same type with C, but it can acquire information

Painting Robot in Motor Company

Assembly Robot in Electronic Company

Wearable Robotic Arm and Tele-Operated Robot (KIST)

HONDA (ASIMO) – Biped Robot Fujitsu – Biped Robot (Laptop Size)
Fundamentals of Robotics 17

Sony (AIBO) – Toy robot

ROBOT CHARACTERISTICS

· Robots are:

- Machines mechanical devices designed for doing work.
- Automatic operations which are executed without external help.
- Reprogrammable multifunctional and flexible: not restricted to one job but can be programmed to perform many jobs (nearly all robot systems contain a reprogrammable computer).
- Responsive must be able to react based on their sensory input.

WHAT IS ROBOTICS?

- Robotics is the art, knowledge base, and the know-how of designing, applying, and using robots in human endeavors.
- Robotics is an interdisciplinary subject that benefits from mechanical engineering, electrical and electronic engineering, computer science, biology, and many other disciplines.

WHAT IS ROBOTICS

History of Robotics:

- 1922: Karel Čapek's novel, Rossum's Universal Robots, word "Robota" (worker)
- 1952: NC machine (MIT)
- 1955: Denavit-Hartenberg Homogeneous Transformation
- 1967: Mark II (Unimation Inc.)
- 1968: Shakey (SRI) intelligent robot
- 1973: T3 (Cincinnati Milacron Inc.)
- 1978: <u>PUMA</u> (Unimation Inc.)
- 1983: Robotics Courses
- 21C: Walking Robots, Mobile Robots, Humanoid Robots

ADVANTAGES VS. DISADVANTAGES OF ROBOTS

- Robots increase productivity, safety, efficiency, quality, and consistency of products.
- Robots can work in hazardous environments without the need.
- Robots need no environmental comfort.
- Robots work continuously without experiencing fatigue of problem.

ADVANTAGES VS. DISADVANTAGES OF ROBOTS

- Robots have repeatable precision at all times.
- Robots can be much more accurate than human.
- Robots replace human workers creating economic problems.
- Robots can process multiple stimuli or tasks simultaneously.

ADVANTAGES VS. DISADVANTAGES OF ROBOTS

- Robots lack capability to respond in emergencies.
- Robots, although superior in certain senses, have limited capabilities in Degree of freedom, Dexterity, Sensors, Vision system, real time response.
- Robots are costly, due to Initial cost of equipment, Installation costs, Need for Peripherals, Need for training, Need for programming.

- Application in 4D environments
 - Dangerous
 - Dirty
 - Dull
 - Difficult
- 4A tasks
 - Automation
 - Augmentation
 - Assistance
 - Autonomous

- Increase product quality:
 - Superior Accuracies (thousands of an inch, wafer-handling: microinch)
 - Repeatable precision
 - Consistency of products
- Increase efficiency:
 - Work continuously without fatigue
 - Need no vacation

- Increase safety:
 - Operate in dangerous environment
 - Need no environmental comfort:
 - Air conditioning, noise protection, etc.
- Reduce Cost:
 - Reduce scrap rate
 - Lower in-process inventory
 - Lower labor cost

- Reduce manufacturing lead time:
 - Rapid response to changes in design
- Increase productivity:
 - Value of output per person per hour increases

- Robots can be classified according to six different characteristics:
 - Use
 - Mobility
 - Motion control
 - Capability
 - Arm configuration
 - End effector

- Use:
 - Industrial robots vs Non industrial robots.
- Mobility:
 - Mobile robots vs Fixed robots.
- Motion control:
 - Servo-controlled robots vs Non-Servo Control

Capability:

- First Generation Robots include both playback and numerically controlled (NC) robots.
- Second generation robots incorporate basic sensory systems to feedback information to the computer controller and can respond to their environment (adaptive robots).
- Third generation robots use artificial intelligence (AI) computers.

- Arm Configuration (Robots that have arms):
 - Rectangular Coordinate Robot vs Cylindrical Coordinate Robot vs Spherical Coordinate Robot.
 - Jointed Arm Robot vs Spine Robot.
- End effector:
 - End effectors are the type of tool attached to the end of the robot arm.
 - ability of end effectors to be automatically changed to a different tool is a major factor in robot flexibility.

ROBOTICS FOR ALL

- Robot Manipulators:
 - Assembly
 - Automation
- Field robots:
 - Military applications
 - Space exploration
- Service robots:
 - Cleaning robots
 - Medical robots

- Biotechnology:
 - Micro/Nano manipulation
 - Sample Handling
 - Automated Analysis
- Urban challenge:
 - Fire Fighting
 - Search and Rescue
- Entertainment robots:
 - Toys

[•]There are over 4 million robots in use in society of which, about 1 million are industrial robots:

WHAT CAN ROBOTS DO?

- Jobs that are dangerous for humans.
- Repetitive jobs that are boring, stressful, or labor-intensive for humans.
- Menial tasks that human do not want to do.
- Chances are, something you eat, wear, or was made by a robot.
- Even much more: When robots enter the public domain, the robot revolution will demand that information age people be "robot literate."
- The future uses and applications are very promising: Future robots will be able to relieve man of many types of physical work.

REFERENCIAS

- Jorge Angeles. (2014). Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms (Mechanical Engineering Series). 4th edition. Springer.
- Bekey G. (2008). Robotics: State of the art and future challenges. Imperial College Press.
- Bruno Siciliano, Oussama Khatib. (2008). Springer Handbook of Robotics. Springer.
- Maja J. Mataric. (2007). The Robotics Primer. MIT Press.
- Barrientos Antonio et al. (2007). Fundamentos de robótica. Segunda Edición. Mc Graw Hill.
- José Santos, Richar J. Duro. (2004). Evolución Artificial y Robótica Autónoma. Alfaomega-RaMA.
- Ming Xie (2003). Fundamentals of Robotics: Linking Perception to Action (Machine Perception and Artificial Intelligence). World Scientific.
- L. Sciavicco, B. Siciliano. (2003). Modeling and Control of Robots Manipulators. Springer.
- Shimon Y Nof. (1999). Handbook of Industrial Robotics. Wiley.
- Harry H. Poole (1989). Fundamentals of Robotics Engineering. First Edition. Springer.
- Mark W. Spong, M. Vidyasagar (1989). Robot Dynamics and Control. Wiley.

GUIÓN EXPLICATIVO

• Esta presentación tiene como fin lo siguiente:

- ¿Qué es un robot?, sus tipos, características y clasificación.
- Leyes de la robótica y ¿Qué es la robótica?
- Qué pueden hacer los robots, sus ventajas y desventajas.

GUIÓN EXPLICATIVO

- El contenido de esta presentación contiene temas de interés contenidos en la Unidad de Aprendizaje Fundamentos de Robótica.
- El material va en Inglés para reforzar la práctica de esta lengua y fomentar el uso de la misma en UDAs avanzadas y especializadas.
- Las diapositivas deben explicarse en orden, y deben revisarse aproximadamente en 24 horas, además de realizar preguntas a la clase sobre el contenido mostrado.