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SUMMARY

The aim of the current study was to assess the effects of adding Chlorella vulgaris algae at different levels on in
vitro gas production (GP) of three total mixed rations (TMR) with different concentrate (C): maize silage (S) ratios
(25C : 75S, 50C : 50S, 75C : 25S). Chlorella vulgaris was added at 0, 20, 40 and 80 mg/g dry matter (DM) of the
TMR and total gas, methane (CH4) and carbon dioxide (CO2) production were recorded after 2, 4, 6, 8, 10, 12,
24 and 48 h of incubation in three runs. Increasing concentrate portion in the TMR linearly increased the
asymptotic GP and decreased the rate of GP without affecting the lag time. Addition of C. vulgaris at 20 mg/
g DM to the 25C : 75S TMR increased the asymptotic GP, CH4, CO2 and GP at 48 h. Addition of C. vulgaris
to the 50C : 50S TMR decreased the asymptotic GP and GP at 48 h. Higher CH4 production was observed
at 48 h of incubation when C. vulgaris was included at (per g DM): 20 mg for the 25C : 75S ration, 40 mg
for the 50C : 50S ration and 80 mg for the 75C : 25S ration. Inclusion of C. vulgaris linearly increased CH4

production for the 50C : 50S ration and increased CO2 production at 10 and 12 h of incubation for the
50C : 50S ration, whereas 20 and 40 mg C. vulgaris/g DM of the 75C : 25S TMR decreased CO2 production.
The 25C : 75S TMR had the highest in vitro DM disappearance with C. vulgaris addition. Chlorella vulgaris
addition was more effective with rations high in fibre content than those high in concentrates. It can be con-
cluded that the optimal level of C. vulgaris addition was 20 mg/g DM for improved ruminal fermentation of
the 25C : 75S TMR.

INTRODUCTION

Microalgae are prokaryotic or eukaryotic photosyn-
thetic microorganisms that have the ability to
convert sunlight, carbon dioxide (CO2) and inorganic
elements into nutrient-rich biomass with good
essential nutrients including lipids, proteins, carbohy-
drates, glycoproteins and calories (Hudek et al.
2014). Furthermore, some microalgae species, e.g.

Schizochytrium, are considered rich sources of n–3
polyunsaturated fatty acids (PUFA) (Pereira et al.
2012).

One important microalgae species is Chlorella
vulgaris. It is a fresh-water, single-celled microalgae
which contains all the essential amino acids in propor-
tions more suitable for humans and animal feed than
soybean, canola, maize and wheat (Tibbetts et al.
2015), making it a nutrient-dense food. Chlorella vul-
garis contains about 580 g protein/kg dry matter
(DM) with about 18 amino acids, and various vitamins
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and minerals with a chlorophyll content as high as
many common plants (Priyadarshani & Rath 2012).
More than 20 vitamins and minerals including
calcium, phosphorous, iron, magnesium, potassium,
vitamins A, B complex, C, E and K, biotin, inositol
and folic acid were reported by Priyadarshani &
Rath (2012). In addition to its content of peptides
and amino acids, which are stimulatory factors for
ruminal microbial growth and digestion, the use of
C. vulgaris as an animal feed additive has many
advantages including increasing the concentration of
some bacterial species, e.g. Butyrivibrio fibrisolvens,
Ruminococcus albus and Clostridium sticklandii with
forage-based diet in in vivo studies, resulting in
improved bacterial growth and promotion of ruminal
trans C18 : 1, trans-11 C18 : 1 fatty acids and monoun-
saturated fatty acids formation in goats (Anele et al.
2016; Tsiplakou et al. 2016). Consequently, microal-
gae rich in fats could be considered a potential
option to reduce methane (CH4) emissions from rumi-
nants because PUFA have antimicrobial effects on
methanogens and protozoa due to their ability to
disrupt microbial cell membranes (Martin et al.
2010). However, Tsiplakou et al. (2016) reported
that microalgae rich in protein and low in fat
content increased the populations of CH4-producing
bacteria and protozoa.
The density and activity of ruminal microflora

depend on the chemical composition and the forage :
concentrate ratio of diets fed to host animals
(Elghandour et al. 2016b). Increasing the dietary
portion of forage has been shown to increase CH4 pro-
duction (Elghandour et al. 2016a). The in vitro gas pro-
duction (GP) technique is a useful tool for studying
potential ruminal degradation of feeds (Rodriguez
et al. 2015; Vallejo et al. 2016). This method allows
for the estimation of how much substrate is used to
produce volatile fatty acids and the energetic value
of feed as well as to determine the amount of substrate
truly fermented, which is converted into microbial
protein (Elghandour et al. 2015a, b). During the first
few hours of incubation (e.g. the first 24 h of incuba-
tion), the fermentation process is very active and
more fermentation products are released. Therefore,
it is important to measure the activity of fermentation
processes at close intervals (i.e. every 2 h), and then
extended to every 24 h. The aim of the present study
was to assess the effects of adding C. vulgaris algae
at different levels on in vitro rumen gas, CH4 and
CO2 production of total mixed rations (TMR) with
different maize silage to concentrate ratios.

MATERIAL AND METHODS

Chlorella vulgaris, substrate and treatments

Chlorella vulgaris microalgae (Xuhuang Bio-Tech Co.,
Ltd., Shaanxi, China) containing 949 g DM/kg, with
944 g organic matter (OM)/kg DM was used in the
current study. The crude protein (CP) content was
591 g/kg DM and the total carbohydrate content was
173 g/kg DM with 18·8 kJ energy/kg DM. The
neutral detergent fibre (NDF) content was 121 g/kg
DM, while the fat content was 134·2 g/kg DM. The
amino and fatty acid profiles of C. vulgaris are
shown in Table 1. Chlorella vulgaris was tested at 0,
20, 40 and 80 mg/g DM of TMR.

Table 1. Amino and fatty acid profiles of Chlorella
vulgaris algae (as provided by the manufacturer)

Items Content

Essential amino acid content (g/kg algae protein)
Arginine 38·8
Histidine 11·5
Isoleucine 19·3
Leucine 59·5
Lysine 42·4
Methionine 10·1
Phenylalanine 30·7
Threonine 29·4
Tryptophan 0·019
Valine 38·6

Non-essential amino acid content (g/kg algae protein)
Alanine 52·1
Aspartic 59·0
Cysteine 0·069
Glutamic 77·6
Glycine 32·0
Proline 30·7
Serine 25·3
Tyrosine 23·8

Fatty acid profile (g/kg total fatty acids)
Myristic acid (C14 : 0) 0·287
Palmitic acid (C16 : 0) 23·8
Palmitoleic acid (C16 : 1n7) 1·30
Stearic acid (C18 : 0) 2·71
Oleic acid (C18 : 1n9c) 4·13
Linoleic acid (C18 : 2n6c) 37·3
Alpha linolenic acid (C18 : 3n3) 40·9
Eicosadienoic acid (C20 : 2) 0·110
Docosanoic acid (C22 : 0) 0·202
Lignoceric acid (C24 : 0) 0·213
Nervonic acid (C24 : 1n9) 0·112
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Three TMR of different concentrate (C): maize silage
(S) ratios (25C : 75S, 50C : 50S and 75C : 25S) were
prepared and used as fermentation substrates.
Samples of TMR were dried at 65 °C for 48 h in a
forced air oven until constant weight, ground in a
Wiley mill to pass through a 1 mm sieve and stored
in plastic bags for subsequent determination of chem-
ical composition and in vitro incubation. Chemical
composition of the TMR is shown in Table 2.

In vitro gas production determination

Rumen inoculum was collected from a ruminally can-
nulated Brown Swiss cow of 450 ± 20 kg body weight,
fitted with a permanent rumen cannula. The cow was
fed ad libitum with a TMR made of a commercial con-
centrate (PURINA®, Toluca, Mexico) and alfalfa hay
in the ratio of 1 : 1 and formulated to meet all nutrient
requirements according to NRC (2001). Fresh water
was available at all times.

Rumen contents were collected before the morning
feeding, flushed with CO2, mixed and strained
through four layers of cheesecloth into a flask with
O2-free headspace. Samples (0·5 g) of each TMR
wereweighed into 120 ml serum bottleswith appropri-
ate addition of C. vulgaris level/g DM. Consequently,
10 ml of rumen fluidwas added to each bottle followed
by 40 ml of the buffer solution recommended by
Goering & Van Soest (1970), with no trypticase added.

Three incubation runs were performed in 3 weeks.
Three hundred and twenty-four bottles with O2-free
headspace (three bottles for each TMR × four levels
of C. vulgaris × three replication × three different
runs) plus three bottles as blanks for each run

(rumen fluid only) were incubated for 48 h. Once all
bottles were filled, they were immediately closed
with rubber stoppers, shaken and placed in an incuba-
tor at 39 °C. The volume of total gas, CH4 and CO2

productions were recorded at 2, 4, 6, 8, 10, 12, 24
and 48 h of incubation. Total GP was recorded using
the Pressure Transducer Technique (Extech Instru-
ments, Waltham) of Theodorou et al. (1994) while
CH4 and CO2 production was recorded using a Gas-
Pro detector (Gas Analyser CROWCON Model
Tetra3, Abingdon, UK).

At the end of incubation at 48 h, the fermentation
process was stopped by swirling the bottles in ice,
then the bottles were uncapped and the pH was mea-
sured using a pH meter (Conductronic pH15, Puebla,
Mexico) and the contents of each bottle filtered to
obtain the non-fermented residue for determination
of degraded substrate.

Degradability and sample analysis

Degradability and sample analysis were determined as
described in Elghandour et al. (2014). Briefly, after 48 h
of incubation, the fermentation process was stopped
and the contents of each serum bottle filtered under a
vacuum through glass crucibles (coarse porosity no.
1, pore size 100–160 µm; Pyrex, Stone, UK) with a sin-
tered filter. The fermentation residues were dried at 65 °
C for 72 h to estimate DM disappearance.

Chemical analyses and calculations

Samples of the TMR and C. vulgaris were analysed
for DM (method 934·01), ash (method 942·05), and

Table 2. Chemical composition (g/kg DM) of the three total mixed rations with different concentrate* (C) to
maize silage (S) ratios (adapted from Elghandour et al. 2015a, b)

Rations

25C : 75S 50C : 50S 75C : 25S S.E.M.

Organic matter 944 940 933 14·8
Crude protein 92 139 133 9·3
Neutral detergent fibre 372 302 218 12·6
Acid detergent fibre 149 127 88 11·0
Acid detergent lignin 15·0 12·6 10·3 1·42

* Contained (g/kg): 200 maize grain flaked, 260 maize grain cracked, 154 sorghum grain, 100 molasses sugarcane,
100 distilled dry grain, 96 soybean meal, 70 wheat bran, 10 NaCOOH3, 10 mineral premix (vitamin A [12 000 000 IU],
vitamin D3 [2 500 000 IU], vitamin E [15 000 IU], vitamin K [2·0 g], vitamin B1 [2·25 g], vitamin B2 [7·5 g], vitamin B6

[3·5 g], vitamin B12 [20 mg], Pantotenic acid [12·5 g], Folic acid [1·5 g], Biotin [125 mg], Niacin [45 g], Fe [50 g],
Zn [50 g], Mn [110 g], Cu [12 g], I [0·30 g], Se [200 mg], Co [0·20 g]).
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nitrogen (method 954·01) according to AOAC (1997),
while TMR contents for NDF (Van Soest et al. 1991),
acid detergent fibre (ADF) and lignin (AOAC 1997;
method 973·18) analyses were carried out using
an ANKOM200 Fibre Analyser Unit (ANKOM
Technology Corp., Macedon, NY). Neutral detergent
fibre was assayed with the use of an alpha amylase
and sodium sulphite. Both NDF and ADF are
expressed without residual ash. The fatty acid com-
position of C. vulgaris was determined on a Perkin-
Elmer chromatograph (model 8420, Beacons-field,
Perkin Elmer, Beaconsfield, UK) equipped with a
flame ionization detector (analysis method ID: GB
5413.27–2010) according to the Chinese national
standard methods (National Standards of People’s
Republic of China 2010) as provided by the manufac-
turer. Fatty acids were esterified using 5% methanolic
hydrogen chloride with pentacosanoic acid as the
internal standard (Sigma, Chemical Co., St. Louis,
MO). Fatty acids were identified by comparing the
retention times of the peaks with those of known stan-
dards. Chlorella vulgaris amino acid content was
determined using a Hitachi High-Speed Amino Acid
Analyser (HITACHI L-8900, Chome Nishishinbash,
Minato-ku, Tokyo, Japan) according to Chinese
national standard methods (analysis method ID: GB/
T 5009·124-2003) as provided by the manufacturer.
The analysis was based on the separation of amino
acids using strong cation exchange chromatography
followed by the ninhydrin colour reaction and photo-
metric detection at 570 nm.
To estimate kinetic parameters of GP, gas volumes

recorded (ml/g DM) were fitted using the NLIN pro-
cedure of SAS (2002) according to the France et al.
(2000) model:

y ¼ A × ½1� e�cðt�LÞ�
where y is the volume of GP at time t (h); A is the
asymptotic GP (ml/g DM); c is the fractional rate of fer-
mentation (/h) and L (h) is the discrete lag time prior to
any gas being released.
Metabolizable energy (ME, MJ/kg DM) was esti-

mated according to the method of Menke & Steingass
(1988) as follows:

ME ¼ 2�20þ 0�136 GPðml=0�5 g DMÞ
þ 0�057 CP ðg=kgDMÞ

where GP is net GP in ml from 200 mg of dry sample
after 24 h of incubation.
The partitioning factor at 24 h of incubation (PF24; a

measure of fermentation efficiency) was calculated as

the ratio of DM degradability in vitro (mg) to the
volume (ml) of GP at 24 h (i.e., in vitro DM disappear-
ance (DMD)/total GP (GP24)) according to Blümmel
et al. (1997).

Statistical analyses

For each end-point studied, and for each TMR, values
recorded from the three repetitions within each incu-
bation run were averaged. Thus, within each TMR
there were three replicates per treatment (each corre-
sponding to the average value recorded at each incu-
bation run) and each replicate was considered as an
experimental unit. Results of in vitro GP and rumen
fermentation parameters were analysed as a factorial
experiment using the PROC GLM option of SAS
(2002) as:

Yijk ¼ μþ Ri þ Aj þ ðR × AÞij þ Eijk

where Yijk is every observation of the ith ration type (Ri)
with jth C. vulgaris level (Aj), μ is the general mean,
(R ×A)ij is the interaction between ration type and C.
vulgaris level and Eijk is the experimental error.
Linear (i.e. additive = values are average) and quad-
ratic (i.e. synergistic = values are higher than the
average) polynomial contrasts were used to examine
responses of different silage to concentrate ratios to
increasing addition levels of C. vulgaris. Statistical sig-
nificance was declared at P < 0·05.

RESULTS

In vitro gas production

In vitro GP (ml/g DM) of the three TMR with different
C : S ratios at different levels of C. vulgaris addition is
shown in Fig. 1. There were significant interactions
(P < 0·05) between ration type × C. vulgaris level for
the asymptotic GP and CH4 production at 48 h of
incubation (Table 3). Increasing the concentrate
portion of the TMR linearly increased (P < 0·001) the
asymptotic GP and decreased (P < 0·001) the rate of
GP without affecting lag time. Addition of C. vulgaris
to the 25C : 75S TMR increased the asymptotic GP
(quadratic effect, P = 0·047). On the other hand, add-
ition of C. vulgaris to the 50C : 50S TMR decreased the
asymptotic GP (quadratic effect, P = 0·021). There
were no effects of C. vulgaris addition to the 75C :
25S TMR on GP (Table 3).

Increasing the concentrate portion in the TMR
linearly increased (P < 0·001) GP, CH4, CO2 and GP

Chlorella vulgaris affects in vitro rumen gas production 497

https://doi.org/10.1017/S0021859616000812
Downloaded from https:/www.cambridge.org/core. Cambridge University Press, on 06 Mar 2017 at 09:32:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0021859616000812
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


at 48 h of incubation. The highest (quadratic effect,
P = 0·035) CH4 production at 48 h of incubation was
observed with 20 mg/g DM for the 25C : 75S TMR,
40 mg/g DM for the 50C : 50S ration and 80 mg/g
DM for the 75C : 25S ration. There were no effects of
C. vulgaris addition on CO2 production at 48 h of
incubation (Table 3).

In vitro methane and carbon dioxide production

In vitro CH4 production (ml/g DM) of the three
TMR with different C : S ratios at different levels of

C. vulgaris addition is shown in Fig. 2. There were sig-
nificant interactions (P < 0·05) between ration type ×
C. vulgaris level for CH4 production at 12 and 24 h
of incubation (Table 3). Ration type quadratically
affected CH4 production at 24 h (P = 0·020) and 48 h
(P = 0·042) of incubation. Algae addition had no
effect on CH4 production. For the 25C : 75S TMR,
addition of C. vulgaris at 80 mg/g DM had the lowest
(quadratic effect, P = 0·022) CH4 production at 10 h
of incubation. On the other hand, addition of
C. vulgaris at all levels to the 50C : 50S ration linearly
increased (P = 0·009) CH4 production. Linear

Fig. 1. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and C. vulgaris algae
addition at 0 (-♦-), 20 (-■-), 40 (-▲-) and 80 (-●-) mg/g DM of the diet on in vitro gas production (ml/g DM).
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reductions in CH4 production were observed at 12 h
(P = 0·005), 24 h (P = 0·013) and 48 h (P = 0·029) of
incubation with the 75C : 25S ration (Table 4).
In vitro CO2 production (ml/g DM) of the three

TMR with different C : S ratios at different levels of
C. vulgaris addition is shown in Fig. 3. There were sig-
nificant interactions (P < 0·05) between ration type ×
C. vulgaris level for CO2 production at 2, 6, 10, 12,
24 and 48 h of incubation (Table 4). Addition of
C. vulgaris linearly increased CO2 production at 4 h
(P = 0·028) and 6 h (P = 0·039) of incubation. Ration
type linearly increased (P = 0·013) CO2 production
at 2 h of incubation. For the 25C : 75S ration,
C. vulgaris addition had no effect on CO2 production

at all incubation times. For the 50C : 50S ration, add-
ition of C. vulgaris linearly increased CO2 production
at 10 h (P = 0·035) and 12 h (P = 0·048) of incubation.
Addition of C. vulgaris to the 75C : 25S ration linearly
increased CO2 production at 10 h (P = 0·035) and
12 h (P = 0·045) of incubation (Table 4).

Fermentation kinetics

No interactions were observed between ration type
and C. vulgaris addition for measured fermentation
parameters, except for pH (P = 0·001) which increased
for the 25C : 75S and 75C : 25S rations but remained
the same for 50C : 50S ration (Table 5). Addition of

Table 3. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and
different levels of microalgae Chlorella vulgaris on in vitro gas production (GP) kinetics, total GP, methane (CH4)
and carbon dioxide (CO2) production at 48 h of incubation

GP parameters
Gas, CH4 and CO2 production
(ml/g DM) at 48 h of incubation

Ration Algae (mg/g DM) A (ml/g DM) c (ml/h) L (h) GP CH4 CO2

25C : 75S 0 271 0·18 1·7 270 40 158
20 316 0·18 1·7 315 46 203
40 270 0·21 1·5 271 40 172
80 275 0·24 1·5 279 35 153
S.E.M. 12·8 0·027 0·33 11·6 5·3 17·3
Linear 0·981 0·452 0·671 0·028 0·936 0·601
Quadratic 0·047 0·587 0·844 0·148 0·399 0·109

50C : 50S 0 414 0·10 1·5 397 56 226
20 309 0·14 1·5 306 48 179
40 393 0·10 1·5 380 69 249
80 357 0·12 1·1 349 62 245
S.E.M. 26·2 0·035 0·38 19·1 11·7 33·0
Linear 0·802 0·969 0·966 0·011 0·449 0·645
Quadratic 0·021 0·364 0·969 0·207 0·339 0·184

75C : 25S 0 469 0·050 1·9 427 64 274
20 432 0·055 1·8 399 49 225
40 468 0·049 1·0 424 52 244
80 469 0·053 1·4 432 68 311
S.E.M. 25·5 0·0025 0·53 20·4 4·6 20·5
Linear 0·976 0·788 0·282 0·930 0·108 0·330
Quadratic 0·277 0·115 0·639 0·329 0·164 0·212

P value
Ration

Linear <0·001 <0·001 NS <0·001 <0·001 <0·001
Quadratic NS NS NS NS NS NS

Algae
Linear NS NS NS NS NS NS
Quadratic 0·029 NS NS NS 0·035 NS

Ration × Algae 0·007 NS NS NS 0·038 NS

NS, not significant; A, asymptotic gas production; c, rate of GP; L, the initial delay before GP begins.
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C. vulgaris had no effect on DMD for the 75C : 25S
ration but decreased DMD for the 25C : 75S ration
(quadratic effect, P = 0·009) and 50C : 50S (linear
effect, P = 0·026) ration. Addition of C. vulgaris had
no effect on ME or PF24 for all rations (Table 5).

DISCUSSION

Chemical composition of Chlorella vulgaris algae

The chemical composition of C. vulgaris algae in the
present study was consistent with some studies but

not with others. Fiogbe et al. (2004) reported that
C. vulgaris algae contained (/kg DM): 200–255 g CP,
31 g fat, 349 g carbohydrates and 85–117 g cellulose,
with a good profile of essential amino acids and rich
content of some vitamins. Janczyk et al. (2006)
reported that C. vulgaris algae contained (/kg DM)
528 g CP, 81 g fat, 56 g carbohydrates, 208 g fibre,
251 g saturated fatty acids (SFA), 157 g mono-SFA
and 585 g poly-SFA. Becker (2007) reported that C.
vulgaris had a high protein content with a balanced
amino acids profile compared with other referenced
food proteins, e.g. soybean and egg. In their review,

Fig. 2. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and C. vulgaris algae
addition at 0 (-♦-), 20 (-■-), 40 (-▲-) and 80 (-●-) mg/g DM of the diet on in vitro methane (CH4) production (ml/g DM).
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Table 4. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and different levels of microalgae Chlorella vulgaris
on proportional methane (CH4) and carbon dioxide (CO2) production (ml/100 ml gas) after 48 h of incubation

Ration Algae (mg/g DM)

Proportional CH4 production at Proportional CO2 production at

2 h 4 h 6 h 8 h 10 h 12 h 24 h 48 h 2 h 4 h 6 h 8 h 10 h 12 h 24 h 48 h

25C : 75S 0 0·3 0·3 2·3 2·3 5·0 7 12 15 9 11 21 30 35 45 50 59
20 0·0 0·7 2·3 2·3 4·3 8 11 15 7 15 25 32 42 49 55 65
40 0·0 0·3 2·7 2·7 5·7 8 12 15 9 16 26 35 40 49 55 63
80 0·0 0·3 0·7 0·7 2·7 6 9 13 5 11 18 25 32 39 46 0·6
S.E.M. 0·17 0·33 0·33 0·33 0·29 1·1 1·2 2·0 1·1 1·8 1·9 2·2 3·9 3·6 4·7 4·3
Linear 0·195 0·500 0·500 0·500 0·141 0·840 0·851 0·911 0·866 0·077 0·095 0·108 0·401 0·459 0·530 0·456
Quadratic 0·438 0·694 0·694 0·694 0·022 0·564 0·745 0·948 0·169 0·560 0·521 0·886 0·383 0·752 0·609 0·478

50C : 50S 0 0·0 0·3 1·7 1·7 3·0 5·0 10 14 7·4 12 18 26 31 41 48 58
20 0·0 0·7 2·3 2·3 4·0 7·3 11 15 6·8 12 21 27 34 43 50 58
40 0·0 0·7 2·7 2·7 5·7 9·7 14 18 6·3 13 22 32 41 51 58 66
80 0·0 1·0 2·3 2·3 5·3 8·7 13 17 8·2 17 25 34 42 52 60 70
S.E.M. 0·00 0·29 0·53 0·53 0·90 0·96 1·3 1·7 0·78 2·1 2·2 2·9 2·9 3·1 3·6 3·4
Linear 1·000 0·438 0·217 0·217 0·069 0·009 0·068 0·135 0·332 0·648 0·182 0·144 0·035 0·048 0·083 0·156
Quadratic 1·000 0·650 0·803 0·803 0·769 1·000 0·845 0·757 0·903 0·880 0·649 0·647 0·560 0·475 0·432 0·433

75C : 25S 0 0·0 1·0 2·3 2·3 4·3 8·0 11·7 15·0 4 12 21 30 40 49 55 64
20 0·0 1·0 1·3 1·3 3·7 4·3 8·3 12·3 4 13 18 27 30 40 39 56
40 0·0 1·0 1·7 1·7 4·0 4·3 8·0 12·3 7 16 22 29 30 40 40 58
80 0·0 0·3 1·3 1·3 3·0 7·0 10·7 15·7 8 16 25 34 44 54 54 72
S.E.M. 0·00 0·17 0·33 0·33 0·80 0·69 0·82 0·71 1·1 1·5 1·8 2·6 2·7 2·6 2·6 2·8
Linear 1·000 1·000 0·195 0·195 0·776 0·005 0·013 0·029 0·110 0·109 0·721 0·932 0·035 0·045 0·159 0·145
Quadratic 1·000 1·000 0·141 0·141 0·623 0·061 0·172 0·162 0·226 0·459 0·165 0·417 0·155 0·167 0·226 0·195

P value
Ration

Linear NS 0·041 NS NS NS NS NS NS 0·013 NS NS NS NS NS NS NS
Quadratic NS NS NS NS NS NS 0·020 0·042 NS NS NS NS NS NS NS NS

Algae
Linear NS NS NS NS NS NS NS NS NS 0·028 0·039 NS NS NS NS NS
Quadratic NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

Ration × Algae NS NS NS NS NS 0·002 0·031 NS 0·013 NS 0·031 NS 0·003 0·003 0·028 0·021

DM, dry matter; NS, not significant.
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Priyadarshani & Rath (2012) reported that C. vulgaris
contains (/kg DM) about 410–580 g CP, 120–170 g
carbohydrate and 100–220 g fat. The differences
observed between these reports and the results in
the present study may be due to different cultivation
conditions and nutrition (Priyadarshani & Rath
2012). Protein is the most expensive nutrient in
animal feed, thus developing natural alternatives to
conventional protein meals may be cost-effective.
Among all dietary amino acids in ruminant nutrition,
lysine and methionine are the first and second limiting
amino acids, respectively. The profile of amino acids

in C. vulgaris shows relatively high amounts of lysine
and methionine (Lum et al. 2013; Kholif et al. in press).

Influence of ration type on in vitro gas production

The interaction between ration type ×C. vulgaris level
suggests that the fermentation kinetics are ration- and
algae-level-dependent, thus underpinning the import-
ance of identifying optimal supplemental levels of
C. vulgaris for each ration type.

Rations with higher concentrate portions had higher
asymptotic GP with lower rates of GP compared with

Fig. 3. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and C. vulgaris algae
addition at 0 (-♦-), 20 (-■-), 40 (-▲-) and 80 (-●-) mg/g DM of the diet on in vitro carbon dioxide production (ml/g DM).
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high silage rations, implying an effect of the chemical
composition of the feeds, in particular its fibre and
protein contents, on GP and fermentation kinetics
(Elghandour et al. 2014, 2015a). Gas production is
generally a good indicator of digestibility, fermentabil-
ity and microbial protein production (Rodriguez et al.
2015). Higher proportions of concentrates in the
rations indicate a better nutrient availability for
rumen microorganisms (Elghandour et al. 2014),
which will stimulate the degradability of different
nutrients (Hamid et al. 2007). Increasing fibre
content as a result of increased maize silage portion
may have negative effects on microbial growth and
fermentation due to the decreased readily available
energy and protein content and increased structural

carbohydrates content of those rations (Elghandour
et al. 2015b), causing a decrease in ration digestibility
and fermentability (Kumar et al. 2013). Elghandour
et al. (2015a, b) observed that increasing the maize
silage portion in TMRs, instead of concentrate,
lowered GP and negatively affected fermentation.

Influence of Chlorella vulgaris level on in vitro gas
production

Addition of C. vulgaris at 20 mg/g DM to the 25C : 75S
ration increased GP, which suggests increased
ruminal microbial activity. Dubois et al. (2013)
observed that algae rich in protein content increased
GP in the rumen. Chlorella vulgaris contain a unique

Table 5. The effects of three total mixed rations with different concentrate (C) to maize silage (S) ratios and
different levels of microalgae Chlorella vulgaris on in vitro rumen fermentation profile after 48 h of incubation

Ration
Algae
(mg/g DM of diet) pH

DMD
(mg/g DM)

ME
(MJ/kg DM)

PF24
(mg DMD/ml gas)

25C : 75S 0 6·8 560 10·2 5·11
20 6·7 667 11·0 5·02
40 6·7 655 10·3 5·10
80 6·7 665 10·4 5·08
S.E.M. 0·22 14·0 0·39 0·046
Linear 0·087 0·001 0·921 0·892
Quadratic 0·333 0·009 0·138 0·154

50C : 50S 0 6·65 580 12·2 4·89
20 6·65 642 10·8 5·03
40 6·68 635 11·9 4·92
80 6·65 638 11·6 4·96
S.E.M. 0·021 22·0 0·72 0·070
Linear 0·212 0·026 0·785 0·771
Quadratic 0·456 0·404 0·184 0·192

75C : 25S 0 6·7 588 11·6 4·91
20 6·7 598 11·3 4·96
40 6·8 679 11·6 4·92
80 6·8 602 11·9 4·89
S.E.M. 0·33 39·1 0·35 0·036
Linear 0·431 0·142 0·853 0·885
Quadratic 0·481 0·483 0·462 0·398

P value
Ration

Linear NS NS 0·005 0·001
Quadratic 0·001 NS NS NS

Algae
Linear NS 0·004 NS NS
Quadratic NS NS 0·046 NS

Ration × Algae 0·001 NS NS NS

DMD, in vitro dry matter disappearance; ME, metabolizable energy; PF24, partitioning factor at 24 h of incubation; NS, not
significant.
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phytonutrient called Chlorella growth factor (CGF),
which is concentrated in the nucleus of the algae
cells. It comprises nucleic acid associated with pep-
tides, proteins, amino acids, vitamins and sugars,
and it is an agent for improved growth in bacteria
(Kotrbáček et al. 2015). Addition of C. vulgaris at
20 mg/g DM (low level of C. vulgaris in the present
study) had a positive impact on ruminal fermentation
compared to the higher levels. Moreover, C. vulgaris
contains β-glucan, which has a role in scavenging
free radicals (Iwamoto 2004), thus improving
fermentation.

Chlorella vulgaris at high levels has been recog-
nized as an antimicrobial agent that acts against
bacteria, protozoa and fungi, thus resulting in
reduced fermentation activity. In the present study,
increasing C. vulgaris levels negatively influenced
GP. Microalgae contain toxic metabolites (phycotox-
ins), which have antibiotic and antifungal activities
(Garcia-Camacho et al. 2007). Janczyk et al. (2009)
showed that C. vulgaris had a high antimicrobial activ-
ity due to the presence of cyclic peptides, alkaloids
and lipopolysaccharides, in addition to the presence
of polysaccharides, phenolic substances and aromatic
compound. This supports the hypothesis that an
optimal C. vulgaris level could improve fermentation
efficiency. The high nucleic acid content in algal
cells may be another reason for the negative effect
on fermentation with increasing algae levels.

The increased asymptotic GP and rate of GP
without affecting lag time could be due to the pres-
ence of oligosaccharides, sugar sources and non-
protein nitrogen in the algae, which can improve the
growth of bacteria to stimulate microbial activity.

Addition of C. vulgaris was also more effective for
TMR with a high silage (roughage) portion than
those with high concentrate content. It was expected
that low concentrate diets would have better fermen-
tation with algae addition due to better nutrient avail-
ability for rumen microorganisms to stimulate the
degradability of nutrients. Low-quality TMR such as
25C : 75S lack the nutrients for ruminal microflora
growth activity and it is postulated that the addition
of algae provided more nutrients for microbial
growth and activity. In case of high concentrate
TMR, the incubation medium already contained
adequate nutrients required for microbial activity,
and the addition of more nutrients from the algae
had no effect on microbial activity. This suggests that
algae supplementation is more effective with poor
quality TMR than high quality TMR.

Influence of ration type on in vitro carbon dioxide and
methane production

Fermentation of dietary carbohydrates produces gases
in the rumen, composed of hydrogen, CO2 and CH4.
In the present study, ration type had no effect on
CO2 production. However, increasing silage portion
in the TMR increased total gas and CH4 production.
This was expected, because the digestion of fibrous
rations results in the preferential production of
acetate, butyrate and CH4 compared to a concentrate
ration (Kumar et al. 2013). The methanogenic Archaea
can utilize hydrogen gas (H2) produced from the
ruminal degradation of structural carbohydrates for
CH4 production (Stewart et al. 1997). Furthermore,
hydrogen-consuming acetogenic bacteria are able to
use H2 as an energy source for growth using CO2, as
H2 and CO2 are the dominant substrates of methano-
genesis (Morgavi et al. 2010).

Influence of Chlorella vulgaris on in vitromethane and
carbon dioxide productions

The 40 mg algae/g DM level of C. vulgaris addition
decreased CH4 production of the 25C : 75S TMR.
This may be related to the decreased DMD with this
level of C. vulgaris addition (Anele et al. 2016). As pre-
viouslymentioned, decreasedDMDmayhave resulted
in decreasedGP for the 25C : 75S TMR.Goel &Makkar
(2012) suggested that CH4 production was associated
with the increase in fermented and digested feed nutri-
ents. Besides this, and due to its high eicosapentaenoic
and docosahexaenoic (DHA) contents, C. vulgaris has
been considered as a possible additive for reduction of
CH4 emissions (Tsiplakou et al. 2016). This may be
related to its content of unsaturated fatty acids, resulting
in reduced CH4 production (Martin et al. 2010). Fievez
et al. (2007) observed up to 80% reduction in CH4 pro-
duction with the addition of a DHA-rich supplement.
Tsiplakou et al. (2016) observed an increased metha-
nobacteria and protozoa population in the rumen
liquid of goats fed a forage-based diet supplemented
withC. vulgaris. Anele et al. (2016) observed a negative
correlation between CH4 production and microalgae
content of carbohydrate, oleic acid (C18 : 1n–9) and
α-linolenic acid (C18 : 3n–3).

Addition of C. vulgaris at 80 mg/g DM increased
CO2 production with both 50C : 50S and 75C : 25S
TMR. However, the levels of 20 and 40 mg/g DM of
C. vulgaris addition with the 75C : 25S TMR decreased
CO2 production, suggesting that the effect of

504 A. E. Kholif et al.

https://doi.org/10.1017/S0021859616000812
Downloaded from https:/www.cambridge.org/core. Cambridge University Press, on 06 Mar 2017 at 09:32:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0021859616000812
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


C. vulgaris microalgae is ration-type and -level
dependent. Generally, microalgae lack lignin (Chen
et al. 2013), which gives them the ability to sequester
more CO2 into digestible biomass, e.g. carbohydrate,
protein and lipids (Walker 2009) and may be used to
produce biogas including CH4 and hydrogen via
anaerobic processing (Hughes et al. 2012), suggesting
their potential as a strategy for carbon capture from
fossil fuel manufacturing facilities (Sayre 2010).

Influence of ration type on in vitro fermentation
kinetics

Improved fermentation with the 50C : 50S TMR could
be because of the balanced concentration of nutrients,
especially structural and non-structural carbohydrates
(Elghandour et al. 2015a, b).

Influence of Chlorella vulgaris on in vitro fermentation
kinetics

Improved ruminal fermentation with C. vulgaris add-
ition at 20 mg/g DM was associated with increased
activity of ruminal microbes. It has been shown that
C. vulgaris contains growth-promoting substance
such as S-nucleotide adenosyl peptide complex,
which may affect nutrient digestibility of the animals
(Yan et al. 2012). The addition of C. vulgaris might
have provided the necessary nutrients required by
the microbes to effectively degrade the TMRs for
better fermentation (Anele et al. 2016). Halama
(1990) suggested that the algal content of polysacchar-
ides, phenolic substances and aromatic compounds
had a nutritional and ecological importance to the
fed animals. Tsiplakou et al. (2016) observed
changes in cellulolytic and proteolytic bacteria with
modifications in the cellulase and protease activity
in the rumen liquid of goats receiving C. vulgaris. In
addition, Carro & Miller (1999) demonstrated that
peptides and amino acids are stimulatory factors for
ruminal microbial growth and digestion. Drewery
et al. (2014) reported increased OM digestibility with
increasing levels of microalgae residue supplementa-
tion in steers fed oat straw. Tibbetts et al. (in press)
reported that the dietary effects of algal supplementa-
tion on feed digestibility in ruminants are related in
part to its lipid content. Inclusion of C. vulgaris
increased the concentration of some bacteria in vitro
(Fievez et al. 2007) and in vivo (Tsiplakou et al. 2016).
It can be concluded that C. vulgaris could be used

as a feed additive to improve fermentation and feed

utilization. The optimal level of C. vulgaris addition
was 20 mg/g DM. Chlorella vulgaris addition was
more effective with rations higher in fibre content
than with rations high in concentrates. However,
animal feeding trials are required to validate in vivo
the utilization of C. vulgaris microalgae on animal
performance.
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Autónoma del Estado de México.

REFERENCES

ANELE, U. Y., YANG, W. Z., MCGINN, P. J., TIBBETTS, S. M. &
MCALLISTER, T. A. (2016). Ruminal in vitro gas production,
dry matter digestibility, methane abatement potential and
fatty acid biohydrogenation of six species of microalgae.
Canadian Journal of Animal Science 96, 354–363.

AOAC (1997). Official Methods of Analysis of the
Association of Official Analytical Chemists, Vol. 1, 16th
edn. Washington, DC: Association of Official Analytical
Chemists.

BECKER, E.W. (2007). Micro-algae as a source of protein.
Biotechnology Advances 25, 207–210.

BLÜMMEL, M., STEINGASS, H. & BECKER, K. (1997). The relation-
ship between in vitro gas production, in vitro microbial
biomass yield and 15N incorporation and its implications
for the prediction of voluntary feed intake of roughages.
British Journal of Nutrition 77, 911–921.

CARRO, M. D. &MILLER, E. L. (1999). Effect of supplementing a
fibre basal diet with different nitrogen forms on ruminal
fermentation and microbial growth in an in vitro semi-
continuous culture system (RUSITEC). British Journal of
Nutrition 82, 149–157.

CHEN, C. Y., ZHAO, X. Q., YEN, H.W., HO, S. H., CHENG, C. L.,
LEE, D. J., BAI, F.W. & CHANG, J. S. (2013). Microalgae-
based carbohydrates for biofuel production. Biochemical
Engineering Journal 78, 1–10.

DREWERY, M. L., SAWYER, J. E., PINCHAK, W. E. &WICKERSHAM, T.
A. (2014). Effect of increasing amounts of postextraction
algal residue on straw utilization in steers. Journal of
Animal Science 92, 4642–4649.

DUBOIS, B., TOMKINS, N.W., KINLEY, R. D., BAI, M., SEYMOUR, S.,
PAUL, N. A. & DE NYS, R. (2013). Effect of tropical algae as
additives on rumen in vitro gas production and fermenta-
tion characteristics. American Journal of Plant Sciences 4,
34–43.

ELGHANDOUR, M.M. Y., VÁZQUEZ-CHAGOYÁN, J. C., SALEM, A. Z.
M., KHOLIF, A. E., MARTÍNEZ-CASTAÑEDA, J. S., CAMACHO, L. M.
& CERRILLO-SOTO, M. A. (2014). Effects of Saccharomyces
cerevisiae at direct addition or pre-incubation on in vitro

Chlorella vulgaris affects in vitro rumen gas production 505

https://doi.org/10.1017/S0021859616000812
Downloaded from https:/www.cambridge.org/core. Cambridge University Press, on 06 Mar 2017 at 09:32:04, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0021859616000812
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


gas production kinetics and degradability of four fibrous
feeds. Italian Journal of Animal Science 13, 295–301.

ELGHANDOUR, M.M. Y., KHOLIF, A. E., SALEM, A. Z. M., MONTES

DE OCA, R., BARBABOSA, A., MARIEZCURRENA, M. &
OLAFADEHAN, O. A. (2016a). Addressing sustainable
ruminal methane and carbon dioxide emissions of
soybean hulls by organic acid salts. Journal of Cleaner
Production 135, 194–200.

ELGHANDOUR, M.M.M. Y., KHOLIF, A. E., BASTIDA, A. Z.,
MARTÍNEZ, D. L. P. & SALEM, A. Z. M. (2015a). In vitro gas
production of five rations of different maize silage and
concentrate ratios influenced by increasing levels of
chemically characterized extract of Salix babylonica.
Turkish Journal of Veterinary and Animal Sciences 39,
186–194.

ELGHANDOUR, M.M.M. Y., KHOLIF, A. E., MÁRQUEZ-MOLINA, O.,
VÁZQUEZ-ARMIJO, J. F., PUNIYA, A. K. & SALEM, A. Z. M.
(2015b). Influence of individual or mixed cellulase and
xylanase mixture on in vitro rumen gas production
kinetics of total mixed rations with different maize silage
and concentrate ratios. Turkish Journal of Veterinary and
Animal Science 39, 435–442.

ELGHANDOUR, M.M.M. Y., KHOLIF, A. E., HERNANDEZ, J.,
MARIEZCURRENA, M. D., LOPEZ, S., CAMACHO, L. M.,
MARQUEZ, O. & SALEM, A. Z. M. (2016b). Influence of the
addition of exogenous xylanase with or without pre-incu-
bation on the in vitro ruminal fermentation of three fibrous
feeds. Czech Journal of Animal Science 61, 262–272.

FIEVEZ, V., BOECKAERT, C., VLAEMINCK, B., MESTDAGH, J. &
DEMEYER, D. (2007). In vitro examination of DHA-edible
micro-algae. 2. Effect on rumen methane production
and apparent degradability of hay. Animal Feed Science
and Technology 136, 80–95.

FIOGBE, E. D., MICHA, J. C. & VAN HOVE, C. (2004). Use of a
natural aquatic fern, Azolla microphylla, as a main com-
ponent in food for the omnivorous–phytoplanktonopha-
gous tilapia, Oreochromis niloticus L. Journal of Applied
Ichthyology 20, 517–520.

FRANCE, J., DIJKSTRA, J., DHANOA, M. S., LÓPEZ, S. & BANNINK, A.
(2000). Estimating the extent of degradation of ruminant
feeds from a description of their gas production profiles
observed in vitro: derivation of models and other
mathematical considerations. British Journal of Nutrition
83, 143–150.

GARCIA-CAMACHO, F., GALLARDO-RODRIQUEZ, J., SANCHEZ-
MIRON, A., CERON-GRACIA, M. C., BELARBI, E. H., CHISTI, Y.
& MOLINA-GRIMA, E. (2007). Biotechnological significance
of toxic marine dinoflagellates. Biotechnology Advances
25, 176–194.

GOEL, G. & MAKKAR, H. P. S. (2012). Methane mitigation from
ruminants using tannins and saponins, a status review.
Tropical Animal Health Production 44, 729–739.

GOERING, M. K. & VAN SOEST, P. J. (1970). Forage Fiber
Analysis (Apparatus, Reagents, Procedures and Some
Applications). Agriculture Handbook, No. 379.
Washington, DC: Agricultural Research Service, USDA.

HALAMA, D. (1990). Single cell protein. In Nonconventional
Feedstuffs in the Nutrition of Farm Animals (Ed. K.
Boda), pp. 34–49. New York: Elsevier Science
Publishing Company, Inc.

HAMID, P., AKBAR, T., HOSSEIN, J. & ALI, M. G. (2007). Nutrient
digestibility and gas production of some tropical feeds
used in ruminant diets estimated by the in vivo and in
vitro gas production techniques. American Journal of
Animal and Veterinary Sciences 2, 108–113.

HUDEK, K., DAVIS, L. C., IBBINI, J. & ERICKSON, L. (2014).
Commercial products from algae. In Algal Biorefineries
(Eds R. Bajpai, A. Prokop & M. Zappi), pp. 275–295.
New York: Springer Science.

HUGHES, A. D., KELLY, M. S., BLACK, K. D. & STANLEY, M. S.
(2012). Biogas from microalgae: is it time to revisit the
idea? Biotechnology for Biofuels 5, 86. doi: 10.1186/
1754-6834-5-86.

IWAMOTO, H. (2004). Industrial production of microalgal
cell-mass and secondary products – major industrial
species. Chlorella. In Handbook of Microalgal Culture:
Biotechnology and Applied Phycology (Ed. A.
Richmond), pp. 255–263. UK: Blackwell Science.

JANCZYK, P., LANGHAMMER, M., RENNE, U., GUIARD, V. &
SOUFFRANT, W. B. (2006). Effect of feed supplementation
with Chlorella vulgaris powder on mice reproduction.
Archiva Zootechnica 9, 122–134.

JANCZYK, P., HALLE, B. & SOUFFRANT, W. B. (2009). Microbial
community composition of the crop and ceca contents
of laying hens fed diets supplemented with Chlorella
vulgaris. Poultry Science 88, 2324–2332.

KHOLIF, A. E., MORSY, T. A., MATLOUP, O. H., ANELE, U. Y.,
MOHAMED, A. G. & EL-SAYED, A. B. (in press). Dietary
Chlorella vulgaris microalgae improves feed utilization,
milk production and concentrations of conjugated linoleic
acids in the milk of Damascus goats. Journal of Agricultural
Science, Cambridge. doi:10.1017/S0021859616000824.
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