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A method to solve the design of a distribution network for bottled drinks company is introduced. The distribution network proposed
includes three stages: manufacturing centers, consolidation centers using cross-docking, and distribution centers. The problem
is formulated using a mixed-integer programming model in the deterministic and single period contexts. Because the problem
considers several elements in each stage, a direct solution is very complicated. For medium-to-large instances the problem falls into
large scale. Based on that, a primal-dual decomposition known as cross decomposition is proposed in this paper. This approach
allows exploring simultaneously the primal and dual subproblems of the original problem. A comparison of the direct solution
with a mixed-integer lineal programming solver versus the cross decomposition is shown for several randomly generated instances.
Results show the good performance of the method proposed.

1. Introduction

The constant emphasis on customer satisfaction has high-
lighted the importance of designing distribution networks of
firms [1]. Optimal network design plays an important role
in the supply chain operation, as good logistics distribution
network can save transportation costs as well as improve
customer service levels [2]. Facility location can be a criterion
for the design of distribution networks. Many organizations
consider facility location as a strategic decision for having
high material handling cost.

Distribution costs in many industries constitute an
important part of the total logistics expenditure. Conse-
quently, the final price is strongly linked to the location of
facilities where products are manufactured or stored; see
Figure 1. In particular, a cost to take into consideration is the
fix cost of opening and setting up new facilities as tempo-
ral consolidation centers or mixing centers, that is, cross-
docking or merge-in-transit centers [3].

Given that the complexity of the mathematical model
falls in Np-hard, we propose an efficient method to solve

the design of a soda bottling distribution system, depicted in
Figure 2. The proposed distribution network is constituted by
plants, warehouses (cross-docking and merge-in-transit cen-
ters), and distribution centers. Commodities are produced
at several capacitated plants and the demand of distribution
centers is satisfied from warehouses.

The problem is to determine among the possible ware-
houses the ones to be opened to consolidate the demand and
by which warehouse each distribution center is exclusively
served. The objective is minimizing fix costs and total
transportation costs and to establish a network of routes that
enables the flow of products in order to satisfy some demand
characteristics. The proposed network is shown in Figure 3.

2. Literature Review

Network design problems with real scenarios are widely
addressed in optimization problems. Most of them study
four supply chain functions: location, production, inventory,
and transportation with the aim of integrating them. In [4],
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an integrated optimization model of supply chain functions
in a multiplant, multiproduct, and multicustomer supply
chain with deterministic demand is developed and formu-
lated as a capacitated location, production, and distribution
problem.

More recent papers include the study of real cases focus-
ing on particular aspects of the location problem. In [5],
the authors present a review in the context of supply chain
management and its integration with other decisions in the
context of network design. For example, in [6, 7], interesting
aspects in the distribution network design are enumerated
including the classical facility location problem solved by
different techniques according to the specific objectives.

Nowadays the competitive and ever-changing business
environment makes the distribution network design more
complicated. New features including specific conditions with
suppliers, distribution centers, and customers are modeled. A
seminal work was done by [8] in which an extended view of
the distribution network design including suppliers, facilities
(production and distribution), customers, and many kinds of
transportation means is included.

Research work by [9] provides a literature review about
the main research papers published from 2005 to 2015 under
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the following keywords: distribution networks design, supply
chain, logistics, and global. The review includes a description
of the operations research techniques used to solve each
problem.

Numerous methods of solution have been used to solve
facility location problems including [10], in which a new
method for the solution of the problem addresses the optimal
location of distribution centers between plants and cus-
tomers. Because of the dimension of the problem, they
develop an algorithm based on Benders decomposition (BD)
[11] for solving a multicommodity distribution network.
Reference [12] introduces a mixed-integer problem (MIP)
to model a multiproduct distribution network solved with
BD and two Tabu Search heuristics that made possible the
convergence and solution quality. Another classical model
is found in [13], in which a model solves a minimization
function that includes fix costs in warehouses, distribution
centers, and transportation costs for multicommodities from
plants to warehouses and finally to customers. Similarly in
[13], a triechelon, multicommodity system including produc-
tion, distribution, and transportation planning is solved using
Lagrangian Relaxation (LR) in a heuristic. In [14-16], a facility
location problem is also solved but they consider the specific
features to solve the problem.

In [17] a distribution network design problem with 3
stages is solved optimizing the numbers of locations and
capacities of plants and warehouses. At the same time the
problem minimizes total costs and satisfies all demands.
Given the complexity of the solution the authors use a
Lagrangian based solution procedure for the problem. In
[18] a variable neighborhood search (VNS) heuristic method
integrating a Tabu Search procedure is used to solve a large
scale production and distribution network design model.

A different solution strategy is presented by [19] based
on bilevel programming problem. In this paper a distribution
network with distribution and production plants around the
world is solved using an extended genetic algorithm. Another
multicriteria proposal is given by [20] whose authors solve
the problem with MIP (is not large scale problem) making
tactical decisions for distributing the product to customers. In
[21], a multiobjective genetic algorithm is developed to solve
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a stochastic production-distribution network in which the
objective function is optimizing the costs and service level.

In [22], an integrated distribution network design and site
selection problem is analyzed. The setting is in the context
of transportation planning faced by the freight-forwarding
industry. The problem includes a strategic level multicom-
modity network design. In this problem each commodity is
defined by a unique pair of origin and destination points and
arequired amount of flow and other considerations proper to
the real world using BD.

In [23, 24], also a BD approach is used, first in com-
bination with an intelligent algorithm to improve the time
solution for the main problem and later in a modified version
that takes advantage of the mathematical formulation. In both
cases the problem is in deterministic, multicommodity, and
single period contexts.

BD or primal decomposition methods exploit only the
primal structure of the original problem. However, many
mixed-integer programming problems have primal and
dual easy-to-solve problems; for example, in [25-27], cross
decomposition (CD) is used to solve a capacitated facility
location problem by defining subproblems of transportation
and location of plants.

In conclusion, the reviewed research papers addressing
the facility location and transportation planning problems
have missed modeling cross-docking and merge-in-transit
centers which are a novel feature in this paper.

In this paper, we propose single-sourcing constraints
ensuring that each distribution center is exclusively served
by a single cross-docking or merge-in-transit center; see
Figure 2. This condition arises often in bottled drinks com-
panies where the operating conditions restrict that only one
cross-docking center serves one distribution center. Addi-
tional operating conditions from the real case are included
in the constraints and explained in Section 3.

The model considers binary variables for cross-docking
locations and the allocation of cross-docks to distribution
centers. Continuous variables for the flow of a single com-
modity from plants to operating cross-docks are defined.
This is a common problem for bottling companies to define
specific supply routes to each distribution center. Using the
proposed mathematical model more efficient transportation
routes will be generated.

We assume that the design of the distribution network
can be solved efficiently by using decomposition techniques,
more specifically a primal-dual decomposition. This method
was originally developed for linear mixed-integer program-
ming problems but the approach is more general and not
restricted to such problems.

Many combinatorial optimization problems can be solved
if the complexity of variables and constraints were removed.
Some examples are the assignment problem, the facility
location problem [28], the optimal power flow [29], and other
mixed-integer programming problems.

Primal-dual decomposition can offer also better com-
putational time than traditional decomposition techniques,
such as Benders decomposition and Lagrangian Relaxation.
However, the key point for having good results using primal-
dual decomposition techniques is the mathematical structure

of the problem. By this we mean if the rows and columns of
the coeflicient matrix can be rearranged so that the matrix
has block-angular form, then primal-dual decomposition
method will generate better solutions.

The paper is organized as follows. Section 3 presents
a mathematical programming model of the distribution
problem. Section 4 describes the cross decomposition that is
the solution methodology. In Sections 5 and 6 we present the
computer implementation and experimental results. Conclu-
sions are reported in Section 7.

3. Mathematical Model

Let K be the set of manufacturing plants. An element k € K
identifies a specific plant of the company. Let I be the set of
the potential cross-docking warehouses. An element i € I is
a specific cross-docking warehouse. Finally, let J be the set of
distribution centers; a specific distribution center isany j € J.
Let Z denote the set of integers {0, 1}.

Parameters. Consider the following:
Q. = capacity of plant k.
B; = capacity of cross-docking warehouse i.

F; = fixed cost of opening cross-docking warehouse in
location i.

Gy; = transportation cost per unit of the product from
plant k to the cross-docking warehouse i.

C;; = cost of shipping the product from cross-dock i

to the distribution center (CeDis) j.

d; = demand for the distribution center j.

Decision Variables. We have the following sets of binary
variables to make the decisions about the opening of the
cross-docking warehouse and the distribution for the cross-
docking warehouse to the distribution center:

Y.

1

1 If location i is used as a cross-docking warehouse,
0 otherwise,

)

1 if cross-dock i supplies the demand of CeDis j,
- 0 otherwise.

W, is the amount of product sent from plant k to the cross-
dock i which is represented by continuous variables.

We can now state the mathematical model as a (P)
problem. See [30]. Consider

wm;ir}( Z = Z ZGkiWki + ZFI'YI' + Z Zcijdeij‘ (2)
kirXi>&ij keK iel i€l i€l jeJ

Subject to Constraints

Capacity of the plant is as follows:

YW, <Q, VkeK. 3)

i€l



Balance of product is as follows:

YdX;= YW, Viel @
jeJ keK

Single cross-docking warehouse to distribution center
is as follows:

YX;=1, Vje]. )

i€l
Cross-docking warehouse capacity is as follows:

Zdeij < BY;

' Viel. (6)
j€J

Demand of items is as follows:

pY;< Y Wy, Viel 7
keK

p = min {dj} (8)

W, >0, Viel, VkeK )

YeZ, Viel (10)

XjjeZ, Viel, Vje]. (11)

The objective function (2) considers in the first term the
cost of shipping the product from plant k to the cross-
docking warehouse i. The second term contains the fix cost
to open and operate the cross-docking warehouse i. The last
term incorporates the cost of fulfilling the demand of the
distribution center j. Constraint (3) implies that the output
of plant k does not violate the capacity of plant k. Balance
constraint (4) ensures that the amount of products that arrive
to a distribution center j is the same as the products sent
from plant k. The demand of each distribution center j
will be satisfied by a single cross-docking warehouse i, and
this is achieved by constraint (5). Constraint (6) bounds the
amount of products that can be sent to a distribution center
j from an opened cross-docking warehouse i. Constraint
(7) guarantees that any opened cross-docking warehouse i
receives at least the minimum amount of demand requested
by a given distribution center j. Constraint (8) ensures
that the minimum demand of each distribution center j
is considered. Finally, constraints (9), (10), and (11) are the
nonnegative and integrality conditions.

4. Cross Decomposition Approach

Many of the large scale mixed-integer linear programming
problems are too complex to be solved directly with com-
mercial software. However, when the computational com-
plexity grows exponentially according to the instance size,
decomposition techniques usually offer better solutions. As it
is seen before, in this cases Benders decomposition is used as
well as the Lagrangian Relaxation. In general terms, Benders
decomposition generates good results. However, the master
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Primal subproblem

FIGURE 4: Cross decomposition algorithm.

problem of Benders can be difficult to solve and require very
large computation time [31, 32].

In this paper, with very large instances including several
plants, cross-docks, and distribution centers, the optimal
design of the distribution network involves a very large
number of integer binary variables that generate large com-
putational time for reaching the optimal solution.

Because Benders method sometimes produces better
bounds than Lagrange method but the solution of its master
problem involves large amount of computational time, in this
paper we use cross decomposition to obtain automatically the
best primal and dual bounds and an approximate optimal
solution. Cross decomposition can obtain exact and finite
solutions for mixed-integer models if the continuous part of
the problem is convex and linear. This decomposition method
unifies Benders decomposition and Lagrangian Relaxation
into a single framework that involves iterative solutions
to a primal subproblem (Benders) and a dual subproblem
(Lagrange).

Cross decomposition [28] consists basically in a first
stage of solving subproblems: primal and dual. The dual
subproblem generates the binary variables (?i and X»j) that
will be fixed for the primal subproblem. Additionally, the
dual subproblem provides a lower bound of the optimal value
for the objective function (®pg). The primal subproblem
generates the Lagrangian multipliers (A;) that will be fixed
for the dual subproblem. At the same time, the primal
subproblem produces an upper bound of the optimal value
for the objective function (Qpg). In each iteration a primal
and a dual convergence test will be performed (CTP and
CTD). If any of these tests fail, there will be a need to solve
the master problem; see Figure 4:

CTP =If Qpg < ¥ go to solve the primal subproblem,
and if not, go to solve Dual Master Problem.

CTD =If Opg < v go to solve the dual subproblem,
and if not, go to solve Dual Master Problem.

v is the least upper bound known and v is the largest
lower bound known at the current step of the algorithm.
Consequently, this method can be used to reduce cpu time
of the original problem [29]. For large scale instances, that
is, problems with large number of plants, cross-docks, and
distribution centers, the direct solution is very complicated
and cpu time increases exponentially. The exponential growth
of the cpu time is related to selecting what cross-dock must
supply the demand for the distribution center.
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In this work we use only the Dual Master Problem
because the subgradient method is implemented; see [33,
34]. A good but not necessary optimal set of multipliers is
obtained by subgradient optimization. The starting multipli-
ers can be set equal to zero. The objective is to limit as much as
possible the use of any master problem. The master problem
is more difficult to solve than the primal or dual subproblems.
To generate the dual subproblem we relax the cross-dock
balance constraint (4). A; is the Lagrangian multiplier of
dualized constraint (4). By dualizing this constraint we obtain
a dual subproblem that is less expensive to solve. This
relaxation also speeds up the solution of this subproblem.
Primal and dual convergence tests are used to check a bound
improvement and to verify when an optimal solution is
reached.

The procedure generates a primal bound (Qpg) and a dual
bound (@) with corresponding optimal values. A disadvan-
tage is that, for nonconvex problem, the convergence cannot
be guaranteed because there is no monotonic improvement
of the bounds. For this reason, the procedure includes a
convergence test that makes sure of obtaining a better bound.
Next we describe the primal and dual subproblems obtained
from the original problem.

Dual Subproblem (DS). Consider the following:

min  Opg

WY Xy
= 2 D GuWii+ Y FY; + ) Y Cyd X,

keK i€l i€l i€l jeJ (12)

+ ), ( > W - Zdeij>

i€l keK jel

subject to constraints (3), (5)-(11).

Primal Subproblem (PS). Consider the following:

min  Qpg

Wi
= Z ZGkiWki + ZFi?i

keK i€l iel

+ ) Cydi X,

iel jeJ

subject to: ZWki <Qp VkeK

i€l
YdX;= YW, Viel
jeJ keK

YdX;<pY, Viel
jel

PY;< YW, Viel
keK

5

p = min {d j}
W, =20, Viel, VkeK.

(13)

Dual Master Problem (DMP). Consider the following:
max Wpyp = Opg
A
(14)

subject to:  A; > 0.

4.1. Cross Decomposition Algorithm

Step I (initialize). Select initial values A; for the Lagrangian
multipliers and set up and apply the corresponding CTD. The
starting multipliers can be set equal to zero. Either stop (the
algorithm terminates when v—v < €) or go to Step 4 or set up
the dual subproblem.

Step 2. Solve the dual subproblem (DS) that is a lower
bound. Apply CTP for Y; and Z»j. Either stop (the algorithm
terminates when v—v < €) or go to Step 4 or set up the primal
subproblem.

Step 3. Solve the primal subproblem (PS) that is an upper
bound. Apply CTD for A.. Either stop (the algorithm termi-
nates when v — v < €) or go to Step 4 or set up the dual
subproblem corresponding to the optimal solution of the
current (PS) and go to Step 2.

Step 4. Solve the master problem. In this work we solve
the Dual Master Problem (DMP). Find new values for the
Lagrangian multipliers that are held fix in DS. Set up the cor-
responding subproblem and go, respectively, to Step 2. In this
case we use subgradient method to solve DMP.

5. Computer Implementation

In this section we compare the computational implementa-
tion for the direct solution versus the solution obtained using
cross decomposition. Both were solved using a commercial
software GAMS [35]. We randomly generated 30 instances
according to the structure and complexity of the real case
instance. The size of an instance is given by the number
of manufacturing plants (|K]), the number of cross-docking
warehouses (|I]), and the number of distribution centers (|]]).
|J| are chosen randomly in set {254, ..., 1000} according to a
uniform distribution. |K| and || follow the same proportion
of the real case instance.

In Table 1, the instances generated with different numbers
of plants, cross-docks, and distribution centers are observed.
Additionally, an instance based on a real case with |K| =
44, |Il = 56, and |J]| = 254 was solved. We test the
solution method under different circumstances to evaluate
the performance under different complexity instances. The
full-scale model and the decomposition strategy proposed
were implemented in GAMS using the solver CPLEX [36] for
the mixed-integer programming (DMP, DS) and the linear
problems (PS). All mathematical models were carried out on



TABLE 1: Size and characteristics of problem instances.
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TaBLE 2: Computational statistics.

Continuous  Binary

Instances K| 111 1]] variables variables Constraints
INST-1 78 99 450 7,722 44,649 825
INST-2 58 73 332 4,234 24,309 609
INST-3 117 148 673 17,316 99,752 1,234
INST-4 110 140 635 15,400 89,040 1,165
INST-5 115 147 665 16,905 97,902 1,221
INST-6 173 220 998 38,060 219,780 1,831
INST-7 51 65 293 3,315 19,110 539
INST-8§ 106 135 614 14,310 83,025 LI125
INST-9 128 163 738 20,864 120,457 1,355
INST-10 124 157 713 19,468 112,098 1,308
INST-11 88 112 510 9,856 57,232 934
INST-12 66 84 382 5,544 32,172 700
INST-13 129 165 747 21,285 123,420 1,371
INST-14 81 103 466 8,343 48,101 856
INST-15 172 219 992 37,668 217,467 1,821
INST-16 80 102 463 8,160 47,328 849
INST-17 146 186 842 27156 156,798 1,546
INST-18 113 144 654 16,272 94,320 1,199
INST-19 105 134 606 14,070 81,338 L113
INST-20 145 185 837 26,825 155,030 1,537
INST-21 98 125 568 12,250 71,125 1,041
INST-22 61 78 354 4,758 27,690 649
INST-23 66 84 381 5,544 32,088 699
INST-24 122 156 706 19,032 110,292 1,296
INST-25 172 219 993 37,668 217,686 1,822
INST-26 68 86 391 5,848 33,712 717
INST-27 141 179 813 25,239 145,706 1,491
INST-28 114 145 659 16,530 95,700 1,208
INST-29 53 67 305 3,551 20,502 559
INST-30 140 178 807 24,920 143,824 1,481

AMD Phenom II N970 Quad-Core with a 2.2 GHz processor
and 4 GB RAM. We set GAMS parameter OPTCR at 0.0015;
that is, the relative termination tolerance is within 0.15% of
the best possible solution. Additionally, the size of all MIP
models was reduced through presolver phase of CPLEX.
The cross decomposition algorithm stops when the values
of the lower and upper bounds are equal, except for a small
tolerance € = 0.15%:

_[(UB-LB)]
e= [—UB ] 100%. (15)
6. Experimental Results

The design of the distribution network studied in this paper
was undertaken using an algorithm of cross decomposition
described in earlier sections. Table 2 illustrates the cpu times
of 30 instances by proposed decomposition strategy. It is

Instances |K]| | 17| GAP (%)  cpu time (seconds)
INST-1 78 99 450 0.20 954
INST-2 58 73 332 0.20 549
INST-3 117 148 673 0.29 1734
INST-4 110 140 635 0.33 1259
INST-5 115 147 665 0.36 1632
INST-6 173 220 998 0.25 3500
INST-7 51 65 293 0.25 495
INST-8 106 135 614 0.24 1476
INST-9 128 163 738 0.26 1847
INST-10 124 157 713 0.33 1810
INST-11 88 112 510 0.35 921
INST-12 66 84 382 0.28 769
INST-13 129 165 747 0.34 1930
INST-14 81 103 466 0.26 1093
INST-15 172 219 992 0.30 3180
INST-16 80 102 463 0.22 852
INST-17 146 186 842 0.28 2031
INST-18 113 144 654 0.29 1027
INST-19 105 134 606 0.32 921
INST-20 145 185 837 0.32 2160
INST-21 98 125 568 0.25 1328
INST-22 61 78 354 0.34 465
INST-23 66 84 381 0.28 643
INST-24 122 156 706 0.24 1759
INST-25 172 219 993 0.30 3420
INST-26 68 86 391 0.32 865
INST-27 141 179 813 0.30 2090
INST-28 114 145 659 0.32 1426
INST-29 53 67 305 0.27 539
INST-30 140 178 807 0.31 2647

also shown that the approximate optimal solution is very
close to the optimal/best found integer feasible solution. The
maximum gap was 0.35%:

_ [ (GAMS Solution — CD Solution)

. -100%. (16)
GAMS Solution

gap

In Figures 5, 6, 7, 8, 9, and 10 are shown the results of six
instances randomly generated. These results were obtained by
the cross decomposition of the original problem.

Looking at the results in Figures 5, 6, and 8 it can be
observed that the number of iterations and the performance
of the lower and upper bounds pick up well the complexity of
small instances.

At the same time, Figures 7, 9, and 10 show an increment
in iterations required and the gap of the solution. These
instances were selected to test the performance of the cross
decomposition in very large and complex scenarios.
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INST-1

7.00E + 09
6.00E + 09
5.00E + 09
4.00E + 09
3.00E + 09
2.00E + 09
9.97E + 08
—-3.00E + 06

ITER1 ITER2 ITER3 ITER4

—+— Lower bound —3.09E + 08 2.09E + 09 2.48E + 09 3.34E + 09
—=— Upperbound 7.58E+09 3.74E+09 3.75E+09 3.35E+ 09
—— OPT 3.35E+09 3.35E+09 3.35E+09 3.35E + 09

FIGURE 5: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

INST-2

9.00E + 09
8.00E + 09
7.00E + 09
6.00E + 09
5.00E + 09
4.00E + 09
3.00E + 09
2.00E + 09
9.97E + 08
—-3.00E + 06

ITER1 ITER2 ITER4

—+— Lower bound —-9.09E + 08
—=— Upper bound 9.83E + 09
—— OPT 4.33E+ 09

2.08E + 09
4.62E + 09
4.33E+ 09

432E+09
4.34E + 09
4.33E+ 09

FIGURE 6: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

INST-real case

4.00E + 11

2.00E + 11

/

6.00E + 06

ITER1 ITER2 ITER3 ITER4

—+— Lower bound -5.05E+08 243E+10 843E+10 8.44E+10
—=— Upperbound 3.54E+11 1.76E+11 9.43E+10 8.46E+ 10
—— OPT 845E+ 10 845E+ 10 845E+10 8.45E+ 10

FIGURE 7: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

Tables 1 and 2 present the structure of the generated
instances and, aditionally, the computational statistics of each
one.

7. Conclusions

In this paper a primal-dual method is used to design a
distribution network for bottled drinks company. Cross
decomposition is a good method for solving large scale

7
INST-26

1.80E + 11 B

1.60E + 11 o

140 + 11 S

1.20E + 11

L.00E + 11 TN

BOOE + 10 |~ oo

6.00E + 10 e T —

4.00E + 10 e .

2.00E + 10 : //

0.00E + 00 I
~2.00E + 10 o R

ITER1 ITER2 ITER3

—+— Lower bound -8.05E + 08 1.43E + 10 444E + 10
—a— Upper bound 1.54E+11 7.62E + 10 446E + 10
—— OPT 4.45E + 10 4.45E + 10 445E + 10

FIGURE 8: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

INST-13
4.00E + 11 - -
3.50E + 11
3.00E + 11
2.50E + 11
2.00E + 11
1.50E + 11 : : : : : :
1.00E + 11 : : : ST S
0.005 + 00
5.00E + 10 ITERA

ITERI ITER2 ITER3 ITER5

—+— Lowerbound -5.05E+08 243E+10 444E+10 544E+10 644E+ 10
354E+11 176E+11 944E+10 846E+10 6.46E+ 10
645E+10 645E+10 645E+10 645E+10 6.45E+10

—®—  Upper bound
—&— OPT

FIGURE 9: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

INST-17
3.00E + 11 : : :
2.50E + 11 ~
2.00E + 11
1.50E + 11 : :
1.00E + 11 : i x

5.00E + 10 /

0.00E + 00|
ITERI ITER2 ITER3 ITER4 ITER5 ITER6 ITER7

—-5.00E + 10

—&— Lowerbound  —3.05E + 08 443E+ 10 8.44E + 10 8.44E + 10 8.44E + 10 8.44E + 10 844E + 10

—#— Upper bound 2.55E+ 11 1.76E + 11 9.44E + 10 8.47E + 10 8.47E + 10 8.47E + 10 8.46E + 10

—a— OPT 8.45E + 10 845E+ 10 845E+ 10 845E+ 10 845E+ 10 8.45E+ 10 8.45E+10

FIGURE 10: Comparison between the objective functions obtained by
GAMS and by the proposed cross decomposition.

mixed-integer programming problems, especially when the
resulting primal and dual subproblems are easy-to-solve, as
in this case. This work proposes a decomposition scheme
that reduced the computational time while maintaining the
convergence of primal and dual solutions.

If the duality gap of the Lagrangian Relaxation is
small, the algorithm converges quickly to optimal or near-
optimal solutions. Otherwise, the method needs other algo-
rithms in order to obtain an exact solution. However, this



method can be used as a heuristic which produces a feasible
solution.

Computational tests are presented using 30 random
instances and real case data. The results show that the pro-
posed solution strategy obtains a maximum gap of 0.35%. For
these kinds of problems, we can often obtain an acceptable
gap between approximate optimal solution (cross decompo-
sition solution) and the optimal solution (CPLEX solution).
For problems with a large duality gap, it is recommended to
use a branch and bound algorithm to reduce this gap. For
the problem studied in this paper there was no need to use
heuristic to eliminate the duality gap. Because of this the use
of convergence tests is recommended.

Future research can be directed towards developing new
procedures to obtain specific Lagrangian multipliers and
improve the quality of the lower and upper bound. The solu-
tion of large scale mathematical problems using traditional
methods takes large computational times. For this reason, the
use of cross decomposition techniques allows the solution in
shorter computational time. In this paper the cpu time was
<3500 seconds. Additionally, cross decomposition methods
can be used in parallel computing which decreases cpu time.

The model proposed in this paper assumes deterministic
parameters and does not consider a decomposition by stages.
Solving the model by stages potentially can generate even
faster solutions but at the same time produce a Lagrangian
multiplier per subproblem. Large number of Lagrangian
multipliers imply a method more sensitive to numerical
stability.

Future research for distribution networks using decom-
position techniques can focus on the implementation on a
grid computing platform that takes advantage of supercom-
puter nodes. This approach can offer a better usage of com-
putational resources. The design of the distribution network
can be advanced using innovative concepts of collaboration in
supply chains as it is the vendor managed inventory, which is
a way to integrate production and supply decisions reducing
the delay of information.
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