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Abstract: We can combine experimental techniques like Flow Cytometry Analysis (FCA) 
with Chemoinformatics methods to predict the complex networks of interactions between 
organic compounds and targets in the immune system. In this work, we determined ex-
perimentally the values of EC50 = 17.82 µg/mL and Cytotoxicity = 20.6 % for the anti-
microbial / anti-parasite drug Dermofural over Balb/C CD9 lymphocytes using flow cy-
tometry. After that, we developed a new Perturbation-theory model for Drug-Cell Target 
Interactome in Lymphocytes based on dispersion-polarization moments of drug structure. 
The models correctly classifies 34591 out of 42715 (Accuracy = 80.9%) cases of perturba-
tions in assay endpoints of 11492 drugs (including both train and validation series). Each 
endpoint correspond to one out of 2616 assays, 38 molecular and cellular targets, 77 stan-
dard type measures, in four possible (human and rodents). 
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INTRODUCTION 
 We can combine multi-target networks models, perturbations 
theory, and flow cytometry to carry out a more complete study of 
the positive effects and/or cytotoxicity of drugs over different cell 
populations of the immune system. Specifically, Lymphocytes are 
also one of the more important cellular lineages of the immune 
system and play a central role in the immune response [1]. The 
main objective of the present work is to develop a valid High-
throughput mt-QSAR model for predicting the inmunotoxic effect 
of drugs over lymphocytes in a large set of mj assay conditions. 
Another important goal is to illustrate the use of the new method in 
a real-life example. Fort it, we are going to download and calculate 
TOPS-MODE selected descriptors for the large dataset reported in 
ChEMBL. Next, we shall fit and validate a new High-throughput 
mt-QSAR Linear Discriminant Analysis (LDA) model using the 
software STATISTICA. After that, we report, by the first time, the 
experimental study of the effect of the drug Dermofural over 
Balb/C mouse thymic lymphocytes T helpers (CD4+) and T cyto-
toxic (CD8+) population using flow cytometry. Finally, we conduct 
the prediction of other endpoints multiplexing assay for Dermo-
fural, not determined experimentally in this work. Also predicts the 
activity of some proteins that act in the immune response.  

REVIEW OF SPECTRAL MOMENTS ANALYSIS FOR 
MULTI-OUTPUT QSPR MODELING 
 We can use different type of moments to quantify the structure 
of molecules in order to predict their interaction with complex 
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soft-matter systems (proteins, cells, etc.) present in living organ-
isms. The spectral moments (µk) of the atoms adjacency matrix A 
are very important for the definition of graph-spectrum-based mo-
lecular structural descriptors. In this context, the spectrum of the 
graph G is the set of the eigenvalues λi of A. The formula for the 
calculation of µk is the following: 

                                                              (1) 
 Specifically, Babic, Graovac, and Gutman [2] reported a rela-
tionship for a descriptor called the energy E(G) of a graph. E(G) is 
based on the new concept of the resonance energy in conjugated 
hydrocarbons introduced by Jiang and Zhang [3]. The Jiang and 
Zhang [3] model involves an expansion of the π-electron energy in 
terms of spectral moments µk, which are equal to numbers of closed 
walks in a molecular graph [4]. Babic, Graovac, and Gutman de-
fined E(G) as follows: 

                                                                               (2) 
 Estrada et al. introduced the method TOSS-MODE [5, 6], and 
later renamed it as the TOPS-MODE method [7-9]. Both versions 
are useful to quantify the structure of molecules using the spectral 
moments of the bond (edge) adjacency matrix B(wt) [5-9]. Estrada 
and Peña [10, 11] used this method to detect critical fragments for 
sedative/hypnotic compounds present in the Merck Index. Both 
B(wt) and µk(wt) depends on bond weighting functions wt; which in 
turn depend on atomic awt or bwt bond physicochemical properties 
of type t. Atomic mass and bon standard distances are examples of 
different types of properties [7-9].  
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                                                                   (3) 
 In any case, almost all predictive studies based on numerical 
molecular descriptors of the chemical structure of organic com-
pounds (Di) are unable to perform multi-target predictions. In fact, 
classic predictive methods for molecule-target interaction use only 
to predict the biological effect of single molecules over one target 
or system [12, 13]. This situation applies also to almost all previous 
models based on spectral moments like µk values.  
 However, new multi-target methods can predict properties of 
drugs, macromolecular structures, and macroscopic entities like 
populations taking into consideration changes in characteristics of 
the system. In doing so, González-Díaz et al. have used Box-
Jenkins moving average operators to describe multi-target situations 
[14-17]. These operators are the molecular version of the classic 
Moving Average (MA) component of the Box-Jenkins ARIMA 
models in time series [18]. We see these characteristics of the sys-
tem as sets of physical and/or bio-molecular boundary conditions cj. 
Some of these boundary conditions may be c1 = drug bio-molecular 
targets, c2 = species of organisms, c3 = specific assay protocols, c4 = 
temperature or time ranges, c5 = solvents, etc. We calculated the 
Box-Jenkins operators as the deviation of the molecular structure 
descriptor Di of one compound from the average value <Di(cj)>. 
This is the average value for the structural descriptors of a sub-set 
of molecules measured under the same condition cj.  

                                                                          (4) 
 The method has a high potential for the study of complex bio-
molecular systems in the frontiers between Biophysics and Bio-
chemistry. One interesting case appears when the molecular de-
scriptors iDk of type kth for the ith drug are the spectral moments of 
the adjacency matrix iDk = iµk. Very recently, Luan et al. [19] used 
Box-Jenkins operators of spectral moments to predict the interac-
tion of chemical compounds with 148 possible molecular or cellular 
targets in 11 model organisms (including human). Cytotoxicity 
assays are screening methods that uses different permanent cell 
lines for ranking acute toxicities of parent compounds [20, 21]. We 
can use different types of molecular parameters to predict the inter-
action of drugs with different targets in immune system. Tenorio et 
al. [22] also used spectral moments to find a multi-target model for 
drug immunotoxicity over 36 molecular or cellular targets in 
macrophages. In this particular case of spectral moments, we can 
write MA operators as follow: 

                                                   (5) 

EXPERIMENTAL STUDY OF THE EFFECT DERMO-
FURAL OVER CD19 LYMPHOCYTE TARGETS 
 The measurement of cell viability is an important goal in cyto-
toxicity studies [23-26]. In our study, we examined the populations 
of CD19 lymphocytes using flow cytometry. The analyses with 
flow cytometry were performed in order to follow the percentage of 
live lymphocytes present in the lymphocytes populations treated 
with Dermofural at different concentrations we observed changes in 
the viability of the lymphocytes after 24 hours. The assay shows a 
significant increase of dead cells, Cytotoxicity (%) = 20.6%, com-
pared to the group untreated (1.5 %) and the DMSO group (3.1%) 
at cmax = 10 µg/mL. The treatment of 6 and 8 µg/mL results in a 
dose-dependent significant increase in cytotoxicity (14.5%) and 
(17.4%) respectively (Fig. 1).  
 
 
 

 
Fig. (1). Percentage of cytotoxicity in Balb/C mouse tymic B-Lymphocytes 
marked with CD19bioAPC/7AAD exposed to different concentrations of 
Dermofural. 
 
 The percent of cytotoxicity is similar in concentrations 2 and 4 
µg/mL (approximately 7%). In studies [27] with these derivatives 
have worked with other ranges of cytotoxicity (1.25 to 30 µg/ml.). 
These results indicate that has low cytotoxicity Dermofural at this 
concentration (10 µg/mL) for cytotoxicity (%) < 50% is smaller 
than a threshold value is considered to cytotoxic compounds [28]. 
In general, there is no significant difference between different con-
centrations of DMSO group Dermofural. In Table 1, we show the 
results of statistical analysis of the parameters obtained of the flow 
cytometer, using the values for p and significant differences for p < 
0.05 between different concentrations and control groups (Negative 
Control, DMSO), and then the average values of MFI in SSC and/or 
FSC scattering mode, for all samples. We confirm that there were 
significant differences for treated samples of living B lymphocytes 
with respect to control groups.  
 We also investigated the MFI on highly homogenous lympho-
cytes populations defined by the expression of CD19bioAPC ob-
tained from the thymus of healthy mouse. In Fig. (2), we depict 
results for thymus B Lymphocytes of Balb/ C mouse analysis ex-
posed to compound Dermofural at 10µg/mL. This corroborates that 
the B-lineage cells in the thymus account for less than 1% of total 
lymphocytes. 

PT-QSPR MODEL FOR DRUG-LYMPHOCYTE TARGET 
INTERACTOME 
 We introduced one special case of QSPR-perturbation theory 
model combining the spectral moments of a molecular graph iµk(Qt) 
and the approach to multiple input-output perturbations in bio-
molecular systems reported by Gonzalez-Díaz et al. [29, 30]. 
Please, see details about the method in these previous woks. Here 
we used this previous method to develop the first QSTR-
Perturbation model to predict interactions of organic compounds 
with molecular and cellular targets on lymphocyte cells (see Fig. 3). 
We downloaded the database from ChEML 
https://www.ebi.ac.uk/chembldb [31] with >20,000 assays of drugs 
related somehow to lymphocytes. The best QSPR-Perturbation 
model of first order found here with LDA was: 
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 The first input term f(εij)ref is the scoring function f of the effi-
ciency of the known drug-target interaction process εij (known solu-
tion). The term f(εij)ref = 1 if we already know from previous  
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Table 1. Results of statistical analysis of the parameters of the flow cytometer showed significant differences between different con-
centrations and control groups. 

  Group2  

Group1  NC DMSO  

Conc (µg/mL) Parameters p p MFI 

 SCC-H+ FSC-H+  

SCC-H+ CD3FITC+ 

0.872700 

0.041591a 

0.901186 

0.696366 

494.46±43.85 

171.51±27.08 

10 SCC-H+ 7-AAD+ 0.819773 0.967863 233.2±38.38 

 SCC-H+ CD19bio-APC+ 0.208782 0.508540 196.28±31.79 

 CD3FITC+ 7AAD+ 0.130045 0.919263 105.5±17.82 

 CD3FITC+CD19bioAPC+ 0.083138 0.837216 37.77±37.77 

 CD19bioAPC+7AAD+ 0.061232 0.532019 114.96±38.58 

 CD19bioAPC+7AAD- 0.035743a 0.079477 59.18±21.09 

 SCC-H+ FSC-H+  

SCC-H+ CD3FITC+ 

0.574506 

0.009396a 

0.618669 

0.266945 

480.7±43.34 

165.3±26.80 

8 SCC-H+ 7-AAD+ 0.804872 0.962317 207.7±35.39 

 SCC-H+ CD19bio-APC+ 0.080902 0.237483 197.6±122.9 

  CD3FITC+ 7AAD+ 0.046746a 0.633704 110.1±18.43 

 CD3FITC+CD19bioAPC+ 0.007041a 0.172750 46.01±46.01 

 CD19bioAPC+7AAD+ 0.174550 0.835663 109.44±65.7 

 CD19bioAPC+7AAD- 0.126061 0.256566 48.68±10.73 

 SCC-H+ FSC-H+  

SCC-H+ CD3FITC+ 

0.271318 

0.023197a 

0.306663 

0.660648 

358.43±31.67 

212.41±15.51 

6 SCC-H+ 7-AAD+ 0.816395 0.976136 151.2±22.92 

 SCC-H+ CD19bio-APC+ 0.100570 0.323846 131.83±18.23 

  CD3FITC+ 7AAD+ 0.086465 0.917597 76.42±11.36 

 CD3FITC+CD19bioAPC+ 0.023535 a 0.583148 31.85±31.85 

 CD19bioAPC+7AAD+ 0.030059 a 0.418862 80.70±13.96 

 CD19bioAPC+7AAD- 0.017667a 0.044506a 34.94±7.87 

 SCC-H+ FSC-H+  

SCC-H+ CD3FITC+ 

0.421978 

0.024891a 

0.468035 

0.683118 

362.12±30.54 

121.69±16.33 

4 SCC-H+ 7-AAD+ 0.894592 0.993257 164.9±22.86 

 SCC-H+ CD19bio-APC+ 0.755928 0.988748 91.53±11.82 

  CD3FITC+ 7AAD+ 0.032853a 0.656848 68.41±10.94 

 CD3FITC+CD19bioAPC+ 0.049169 a 0.810848 28.13±28.13 

 CD19bioAPC+7AAD+ 0.034993 a 0.463901 63.18±22.05 

 CD19bioAPC+7AAD- 0.016652a 0.041979a 31.54±7.23 

 SCC-H+ FSC-H+  

SCC-H+ CD3FITC+ 

0.626131 

0.021791a 

0.675905 

0.640636 

361.65±34.73 

125.03±18.13 
aSignificant differences. NC is control negative and DMSO is control vehicle. 
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Fig. (2). Graphic type Pseudo-color of gating strategy for thymus B Lymphocytes of Balb/ C mouse analysis exposed to compound Dermofural at 10µg/mL. 
Example Total population Cell SSC-H & FSC-H (A) lymphocytes marked with CD3-FITC (B) CD19bio-APC (C) and Both (D). 
 

 
Fig. (3). Workflow for multi-target prediction of  drug-target interactome networks. 

 
experiments that the compound ith interact with the cellular target in 
the boundary conditions cj, f(εij)ref = 0 otherwise. The atomic-bond 
polarization properties are the Q0 = atomic charge (q), Q1 = Bond 
dipole moment (D), and Q3 = atomic polarizability (α). The condi-
tions of assay are the following c0 = chemical structure, c1 = bio-
logical property, c2 = organism, and c3 = molecular or cellular tar-
get.

  In Table 2, we depict the classification matrix and the values of 
Ac, Sp, and Sn for training and validation series. This values are 

very good taking into consideration the results published for other 
problems with similar methodologies based on average models [32, 
33] or perturbation models [29].  
CONCLUSION 
 QSPR-perturbation theory using spectral moments have a high 
potential to develop different methods for the study of complex bio-
systems. Develop general models based on spectral moments to 
predict the effect of multiple input-output perturbations in complex 
systems it is possible. This new QSPR-Perturbation model can be 
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used to study properties like interaction of drugs with multiple tar-
gets or very different conditions, useful to predict changes on the 
ability of organic compounds to form complex interaction networks 
with molecular and cellular lymphocyte targets such as Dermofural.  
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