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Abstract. Polygonal array graphs have been widely investigated, and
they represent a relevant area of interest in mathematical chemistry
because they have been used to study intrinsic properties of molecu-
lar graphs. For example, to determine the Merrifield-Simmons index of a
polygonal array A, that is the number of independent sets of that graph,
denoted as i(An).

In this paper we consider the problem of extending an initial polyg-
onal array A,, adding a new polygon p to form A, ,, for minimizing
or maximizing the Merrifield-Simmons index i(An+1) = i(An U p). Our
method does not require to compute i(A,,) or i(A,, U p), explicitly.

Keywords: Counting the number of independent sets - Enumerative
algorithms - Efficient counting - Merrifield-Simmons index

1 Introduction

Counting problems are not only mathematically interesting, but also they arise
in many applications. Regarding hard counting problems, the computation of
the number of independent sets of a graph G, denoted as i(G), has been a key
in determining the frontier between efficient and intractable counting problems.

Polygonal array graphs have been widely investigated, and they represent a
relevant area of interest in mathematical chemistry because they have been used
to study intrinsic properties of molecular graphs. In addition, it is also of great
importance to recognize substructures of those compounds and learn messages
from the graphic model by clear elucidation of their structures and properties [6].

There are several works analyzing extremal values for the number of indepen-
dent sets (known in mathematical chemistry as the Merrifield-Simmons index)
on chain graphs [6,7]. Merrifield and Simmons showed the correlation between
i(G) and boiling points on polygonal chain graphs that represent chemical mole-
cules. This index is a typical example of an mnvariant graph used in mathematical
chemistry for quantifying relevant details of molecular structures.
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In 1993, Gutman discussed the extremal hexagonal chains according to three
topological invariants: Hosoya index, largest eigenvalue and Merrified-Simmons
mdex. His work greatly stimulated the study of extremal polygonal chains.

On his seminal paper [3|, Gutman showed extremal linear chains for Merri-
field index in the particular case of hexagonal chains. He conjectured that the
chain with the smallest Merrifield-Simmons index 1s unique and 1t corresponds
to the zig-zag polyphenegraph.

L.Z. Zhang et al. [4,5] showed Gutman’s conjecture. They showed that the
minimum value for the Merrifield-Simmons index is achieved by the zig-zag
polyphenegraph. Later on, Cao et al. [2] showed extremal poligonal chains for
k-matchings (Hosoya index), considering the topology of polygonal arrays that
provide maximum as well as minimum values for the Hosoya index. Their demon-
strations are based on the use of the Z-polynomial (Z-counting polynomial).

The previous mentioned works are concerned to hexagonal chains, or to the
Hosoya index. We consider in this paper, results for the Merrifield-Simmon
index for any kind of polygonal arrays. We consider the problem of extend-
g a polygonal array A by adding a new polygon p, preserving the structure
of polygonal arrays and such that i(A U p) 1s maximum. Instead of computing
the Z-polynomial for the Merrifield-Simmon index as Cao et al. [2] suggested,
our proofs are based on properties that are derived from the product between
Fibonaceil’s numbers with complementary indexes values. In fact, our method
does not require compute i(G) explicity, and it can be adapted to compute
other intrinsic properties on molecular graphs.

2 Polygonal Chains

Let G = (V,E) be a molecular graph. Denote by n(G,k) the number of
ways In which &k mutually independent vertices can be selected in G. By def-
mition, n(G,0) = 1 and n(G,1) = |V(G)|, for all graph G. Furthermore,
i(G) = Y o n(G,k) is the Merrifield-Simmons index of G, that is, exactly
the number of independent sets of G.

A polygonal chain is a graph P, obtained by identifying a finite number
of t congruent regular polygons such that each basic polygon, except the first
and the last one, is adjacent to exactly two basic polygons. When each polygon
m Pj . has the same number of k nodes, then Pj; becomes a linear array of
t k-gons. A special class of polygonal chains is the class of hexagonal chains,
which are chains formed by n 6-gons. Hexagonal systems play an important role
in mathematical chemistry as they are natural representations of catacondensed
benzenoid hydrocarbons.

The propensity of carbon atoms to form compounds, made of hexagonal
arrays fused along the edges gives a relevant importance to the study of chemical
properties of benzenoid hydrocarbons. Those graphs have been widely investi-
gated and represent a relevant area of interest in mathematical chemistry, since
it 1s used for quantifying relevant details of the molecular structure of the ben-
zenoid hydrocarbons [1,6].
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Let H, = hjha---hy be a polygonal chain with n basic polygons, where
each h; and h;;; have exactly one common edge €;,i = 1,2,...,n — 1. A polyg-
onal chain with at least two polygons has two end-polygons, hy and hy,, while
ha,...,hy_1 are the internal polygons of the chain. In a polygonal chain, each
vertex has degree either 2 or 3. The vertices of degree 3 are exactly the end
points of the common edges between two consecutive polygons.

The distance dg(r;y) from a vertex = to another vertex y 1s the minimum
number of edges in an r — y path of G. Similarly, we define the distance between
two edges €1, e on the graph G as the minimum number of edges in an e; — e
path of G.

Let H, be a polygonal chain with n basic polygons joined by one common
edge between two consecutive basic polygons. If for each pair of consecutive
Joining edges e; and e;,; of the polygonal chain it holds that dy_(e;, e;54) =2
then Hj is known as a linear polygonal chain (L), and if dy_(ei,ei41) = 1 for
each pair of consecutive common edges, then H,, is known as a zig-zag polygonal
chain (Z,), see Fig. 1 for an example.

In recent years, several works have been done for determining the extremal
graphs corresponding to the Hosoya and Merrifield-Simmons indexes (2,6, 7). For
many graph classes that have been studied so far, the graph that minimizes the
Merrifield-Simmons index is also the one that maximizes the Hosoya index, and
vice versa, although its relation is still not totally understood.

Fig. 1. Example of a zig-zag octagonal chain

3 Fibonacci Properties to Compute Indices of Polygonal
Chains

It 1s known that for any simple path P, of size n (P, has n vertices), P, fulfills
i(Pn) = Fypy9, where Fy, i1s the nth-Fibonaccl number with initial values Fjy =
0,Fy =1.

Let us consider an isolated vertex as a linear path of size 1, since in this way
i(P;) = F3 = 2. Thus, the size of any simple path i1s the number of vertices in
it. Let £ > 0 be a constant integer and let P; and P; be two disjointed simple
paths, such that i +j = k. It is known that i(F;- P;) = i(F;)-i(P;) = Fiso-Fjso.
We want to determine for which pair (2, j), 1,7 > 2, the value of i(F;) - i(F;) 1s
maximum when j + i = k, for any k > 0 constant.

We apply Binet’s formula to state the computation of Fibonnaci numbers,
1e. F; = %, where a = (1+T\/§) and b= (%) are roots of the polynomial

2 —r — 1 =0. Furthermore, a + b= 1 and ab= —1.
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Let us define the sequence 3; s, with ¢ > 1 and ¢t > s > 1 as follows

,Bt,s = FoF 4 (1)
We firstly show that the sequence j3; ; becomes symmetric when s > |£],

Lemma 1. For all j, such that 1 < j < |%| — 2, the sequence 3, s satisfies the
following

1. ﬂ"l.’“_j =ﬂt’|."1J+j if t is even,
2. ﬂ"l.’ﬂ_j =ﬂ;,lﬂ+j+l if t is odd,

Proof. From Eq. (1) we have
(@a—8)%, 1|5 = (al%J -7 _ bl%J—J‘) (a‘-lﬂﬂ' _pt-ls J+J‘)

— a* —al3-Tp-13]4 _ gt-la]40pl 0] 4 g

(a— b)2‘3‘,[ﬂ+j =a' - a[’}J*’jb“ [%]-7 _ a“[i] -J'bl_ﬂ +i 4 pt

Thus,

(a— b)zp"lﬂ-i =at - ali]‘jb"li’]*i — a"lﬂ +iplsl—i 4+ bt

_alElHage-l5l-i _ ge-L5]-aplel+a
al#Fig—|4]-5 | gt-[%]-3pl4]+

= @-078, |y |, +al¥ltinlal paclel-plel
_algl-age-lal4 _ g5 lvaglel -5

=@=b)%B, 141, + al#]-3p- 1413 [0% _ p]
+at-L%]-dple] - [6¥ —a%)

=(a- b)nﬂ"lilﬂ' + (a% — ) (al'ﬂ —ipe-| g a‘-l"xl—ibl%J—i)

(a% — b%) a2l7]p2l3] (b“’lﬂ _ at—’l'ﬂ)

P
= (a—0b) ﬂ,,la,“.j + GHJ‘Hbl‘“‘”

but ¢ is even, that is ¢ = 2r for some r € Z and t — 2|£| = 0. Therefore,
p2ls) a2t =0 a0 =0 0

Thus, we might assume that 2 < s < l%] then s — 1 <t — 5. Now, we show
that if s is even in 3, , then the sequence is increasing.

Lemma 2. The sequence B2, Bia, Big.... that is {B‘:?P}t,p satisfies By op <
Bt 2p+1) for every p € {1,2, ey I.%J} and all t.
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Proof. We have,
5a 9 (@)
22p (a— b)2
- at — a?Ppt—2P — ot —2Pp2P 4 Pt
(a—b)?
5 - (a2P+2 — p2PH2) (gt=2-2 _ pt-2-2)

t,2(p+1) (a — b)2
ﬂt at — a2p+2bt—2p—2 _ ac—2p—2b2p+2 + bt

2p+2 =

(a —b)?
(a . b)?ﬁt 2p+2 = at . 02p+2bt—2p—2 . at—2p—2b2p+2 1 bt
—a®Pb P _ gt
+a*Pb P 4 o' PP
= (a — b)2,8¢,2p + a?Pht—2P 4 ot —2Pp2P
_ a2p+2bt—2p—2 _ at—?p—2b2p+2
= (a—b)*Brop + (1 —a®b7?) a®b* 7P
+a" " ?Pb?P(1 — a7 %)
_ (a _ b)2ﬂt,2p + (b2 _ a?) a2p+26t—2p
+ (0.2 _ b2) at—2pb2p+2

k
ﬁt,2(p+l) — ﬁt,” + (a — b) [a:—2pb2p+2 . a2p+2be—2p]

_ ﬂt” + ka2p+2b2p+2 [ac—dp—2 _ bz—dp—2]

at—dp—2 _ bt—dp—2
— +k
Beap a—>b

= Brop + kFi_aap41)

and as k, F;_9(2p4+1) > 0, the proof is complete.

On the other hand, if s 1s odd in 3; s then the sequence is decreasing, as the

following lemma shows.

Lemma 3. The sequence {S3 2p+1 }"p satisfies By ops1 > Propia for every p €

{0, 2,..., L%J - l} and all t.
Proof.
(a2P+! — p2pH1) (gt=20-1) _ pt=2p-1)

(a—b)*
at — @2pH1pt—2p—1 _ t-2p—1p2p+1 + b
- (a —b)?

ﬁt,2p+l =
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and
(02p+3 _ b2p+3) (at—2p—3) _ bt—?p—3)

(a—b)*
(a _ b)Qﬂt'Qp-i-?. = at — a?p+3bt—2p—3 _ at—?p—3b2p+3 + Bt
_a2p+lbt—2p—l . at—?p—le}H—l

4 @2PHIpt-2p—1 | t-2p—1p2p+1

ﬂt,2p+3 =

— (a _ b)Qﬂt,2p+1 + a2p+lbt—2p—l + at—2p—1b2p+l
— @2pH3pt—2p-3 _ t—2p-3p2p+3

_ (a _ b)2ﬁt,2p+l + a2p+lbc—2p—l + at—2p—lb2p+l
_ a2P+lbt—2p—la2b—2 _ at—?p—lb2p+la—2b2

_ (a _ b)Qﬁt,Q}H-l +a2p+lbt—2p—l(1 _ GQb—Q)
+a' PP (1 — a7
Using the fact that ab= —1 then a?b® = 1, and

(a2 _ b2)at—2p-lb2p+3 _ (0,2 _ b‘2)a2p+3bt—2p—1

= +
nBt,2P+3 52,2P+1 (a — b)2
at—?p—l b2p+3 _ a?p+3bt—2p—l
- k
Beops1 + —3
at—4(p+1) _ pt—a(p+1)
= Brops1 + k(ab)®*? —3

= ﬂt,2p+l - ka—t-d(p—{—l)

and as k, Fi_¢_4(p+1) > 0, the proof is complete. a
The main Theorem of the section is the following:
Theorem 1. For any integers t, s,k > 1,

1. ming {Fapt—s} =FF _2=F o
2. max, {Fspc—s} =FF,_,=F_,
2|1 which can be easily done
by an algebraic manipulation and the rest of the proof follows from above
lemmas. O

Proof. 1t is enough to proof that 3, oy < B, }

4 Extremal Topologies on Polygonal Graphs

In this section, we show how the previous results about the product of Fibonacci
numbers can be used for determining the structure of polygonal arrays G such
that when adding a new polygon, maximize or minimize (G).
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Let h be a polygon with n sides. Let P; and P; be two different linear paths
of sizes i and j, respectively, such that i + j = k becomes a constant. Let G be
the resulting graph formed by joining P; and P; to the end-nodes of any edge
e = {z,y} € E(h), as it is illustrated in Fig. 2. Notice that e can be any edge of
the polygon since in fact, the initial polygon is a cycle and all of its edges are
indistinguishable.

We show that i(G) i1s maximum under the restriction |FP;| + |P;| = k£ when
i = 2 (P; has exactly two vertex and only one edge) and j = k — 2 (a path of
k — 2 vertices).

Fig. 2. A base graph

Lemma 4. Let h be a polygon of n sides and e = {z,y} € E(h). Let P; =
{z,z1,...,zi—1} and Pj = {y,y1,...,yj—1} be two disjointed paths such that
V(P)NV(h) = {z}, V(P;)NV(h) = {y} and i+ j = k. If G = hU P; UP; then
the marimum for i(G) is achieved when i =2 and j = k — 2.

Proof. Applying the division edge rule on the edge e = {z,y}, we obtain that
i(G) =i(G — €) —i(G — (N[z] U N[y])). Notice that (G — €) is a linear path of
sizen+ (i — 1)+ (j — 1) = n+ k — 2; therefore, i(G — €) = Fp ;. Furthermore,
i(G — €) 1s invariant with respect to the selected position of the edge e € E(h).

On the other hand, (G — (N[z] UN|y])) is formed by three disjointed paths:
Pi_5,P;_5 and the path that results from eliminating e and its two adjacent
edges from h. Let us denote this last path as P,_4. Then, i(G—(N[z]UN|[y]))) =
Fy_3 - F; - Fj. In fact, the result of this product does not depend on the initial
position of e in h because the three resulting paths will have same sizes inde-
pendently of the position of e in h.

Then, maximizing i(G) is equivalent to minimizing F; - F; since these are the
unique sizes on 7 and j that can vary under the restriction i + j = k. According
to Theorem 1, F; - Fj has a minimum value when F; = F5 and F; = Fp_»
which means that the resulting path P;_s after removing N [z| from G should
be empty and the resulting path Pj_5 after removing N[y| from G should have
k — 4 vertices. 0

Lemma 5. Let h be a polygon of n sides and e = {z,y} € E(h). Let P; =
{z,x1,...,zi_1} and P; = {y,y1,...,yj—1} be two disjointed paths such that
V(P)NV(h) = {z}, V(P;)NV(h) = {y} and i+ j = k. If G = hU P; U P; then
the minimum for i(G) is achieved wheni=1 and j =k — 1.

Proof. Similar to Lemma 4. 0O
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Furthermore, the maximum and minimum values for i(G) are achieved inde-
pendently of the number of edges in the polygon h. Consequently, our results
are fulfilled for any polygon joined with two disjointed paths in the end-nodes of
one of its edges. We show in Fig. 3 the extremal topologies for i(G) for the class
of graphs: G = hU P, U P;.

T 1
(= . (e
n Yz

y1 y2 yk_s yk—2
(a) Maximum i(G). (b) Minimum i(G).

Fig. 3. Extremal topologies for i(G), G =hU P, UP;.

Let A, : hy,...,hp,n > 1 be a polygonal array and p a new polygon of k
edges. We denote as e; the common edge between the polygon h; and hi;y. We
want to extend A, to A, joining p to A, in such way that i(A,4) is either
minimum or maximum into the set of possible edges e € E(h,,) to be selected
for joining it with p.

Let us, enumerate the edges of hy, as by, by,...,bgx_1, where by 1s the common
edge between h;, and h,_; and the numeration i1s according to the clockwise
direction. We also consider that h, has more than 5 edges. We must select
e € E(hy) such that i(A, U p) is maximum into the set of possible selections of
edges of hy,. For example, € can not be anyone from by, by, bg_1 because if we
join p to any one of those edges, then A, U p losses the structure of polygonal
arrays.

Theorem 2. Let A, be a polygonal array whose last polygon hy, has k edges and
p be a polygon. Let by, by, ..., bx_1 be the edges of hy, such that by is the common
edge between hy, and hy,_y and the numeration is clockwise. If Apy1 = ApUp is
a polygonal array then max{i(An41)} is achieved when p is joined to A, at b,
that is a distance 2 from the common edge between hy,_y and hy,.

Proof. Applying the division edge rule on e = {z,y} € E(hy), we obtain
i(Ant1) = i(Ans1 — €) — i(Ans1 — (N[z] U N[y])) (2)

The term 1(A,4+1 — €) 1s invariant from e because its values does not depend on
the selected position of e to join p to A,.

Api1—(N|[z]UN|y]) is a graph formed by two connected components: a linear
path Pi_5 with k — 5 edges and then i(Pyx_5) = Fj_2 that is an invariant value
independent to the position of e € F(hy). And the other connected component,
denoted by G, that is a polygonal array where one of the edges in the last polygon
is joined to two disjointed paths P; and Pj. Then, i(Any1 — (N|z] UNJy])) =

i(G) # Fj._2, and that value is minimum if in G is preserved a maximum number
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of edges from A,. It means that (N[z] U Ny|) contains a minimum number of
edges from p and hy,. As §(z) = 6(y) = 3 then the minimum number of edges to
be contained in (N[z] U N[y]) is 7, meaning that e has to be a distance 2 from
the common edge e, between h,,_; and hy,, and also |P;| = 0 and |P;| = k-6,

in order to maximize i(An+1). O

For the minimum Merrifield-Simmon index, it is not a sufficient condition to
state that p is joined to A, to a distance one from the common edge between
h,,_; and h,, since two cases have to be considered, Fig. 4 shows the two possible
configurations in a octahedral polygonal array.

©e ©®
(a) (b)

Fig. 4. In the octahedral polygonal array on the left the shortest path for visiting
€1,€2,€e3 is a path, while it is a tree in the octahedral polygonal array on the right

(c)

Fig. 5. Application of the edge division rule to the graph Fig.4a to compute the
Merrifield-Simmon index

Applying the edge division rule to e3, the decomposition to compute the
Merrifield-Simmon index on the graphs Fig. 4a and b are shown in Figs. 5 and 6,
respectively. The left graphs of Figs. 5a and 6a are invariant, similar to the right
graphs (5c¢ and 6¢) of the same figures. By Lemma 5, the graph of Fig. 6b has
minimum Merrifield-Simmon index than the graph of Fig. 5b hence the polygonal
array has minimum Merrifield-Simmon index when the shortest path of ey, e
and e 1s a path.

Theorem 3. Let A, be a polygonal array whose last polygon hy, has k edges
and p be a polygon. Let e; be the edge joining h; to hy y. If A,y = A, Up
is a polygonal array then min{i(Ap41)} is achieved when p is joined to A, at
distance 1 from en and en_1,en,ep forms a path.

Proof. Similar to the proof of Theorem 2. O
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) )
(a) (b) (c)

Fig. 6. Application of the edge division rule to the graph Fig.3b to compute the
Merrifield-Simmon index

5 Conclusions

We have shown how properties of Fibonacci numbers can be used for the com-
putation of Merrifield-Simmon index. We have shown that, as expected, when
adding a new polygon at distance 2, the maximum number of independent sets
1s obtained among all the possible combinations. Dually, the minimal number of
independent sets is obtained when the distance is 1 and a path is built from the
joining edges. Our method does not require to compute explicitly, the number
of independent sets of the involved graphs.
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