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Abstract
In this paper we introduce a method for color image segmentation by computing automatically the number of clusters the 
data, pixels, are divided into using fuzzy c-means. In several works the number of clusters is defined by the user. In other 
ones the number of clusters is computed by obtaining the number of dominant colors, which is determined with unsupervised 
neural networks (NN) trained with the image’s colors; the number of dominant colors is defined by the number of the most 
activated neurons. The drawbacks with this approach are as follows: (1) The NN must be trained every time a new image is 
given and (2) despite employing different color spaces, the intensity data of colors are used, so the undesired effects of non-
uniform illumination may affect computing the number of dominant colors. Our proposal consists in processing the images 
with an unsupervised NN trained previously with chromaticity samples of different colors; the number of the neurons with 
the highest activation occurrences defines the number of clusters the image is segmented. By training the NN with chro-
matic data of colors it can be employed to process any image without training it again, and our approach is, to some extent, 
robust to non-uniform illumination. We perform experiments with the images of the Berkeley segmentation database, using 
competitive NN and self-organizing maps; we compute and compare the quantitative evaluation of the segmented images 
obtained with related works using the probabilistic random index and variation of information metrics.
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1  Introduction

Image segmentation by color features has been employed in 
different areas such as medicine [1, 2], food analysis [3, 4], 
among others [5–9]. Segmentation of color images has been 
addressed using different methods and techniques; several 
related works treat this issue as a clustering problem because 
the feature of each pixel corresponds to a pattern and the 
combination of the pixels, segment, corresponds to a cluster 
[10, 11]. Several of the previous works based on clustering 
employ FCM [12–15], unsupervised NN [16–20] or a com-
bination of both techniques [21–23].

FCM has been employed successfully for color image 
segmentation; however, this technique requires a priori 
knowledge of the number of clusters the data, pixels, are 
grouped; usually, the number of clusters is defined by the 
user [12, 13, 24]. By using unsupervised NN, they are 
trained to identify specific colors; that is, they are trained 
only with the colors of the image; when the NN is already 
trained the pixels of the image are grouped by the NN. But 
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using NN involves they must be trained every time a new 
image is given and it may be time-consuming [16–18].

Because FCM require a priori knowledge of the number 
of clusters the data are grouped; some works employ unsu-
pervised NN to compute automatically the number of clus-
ters. The proposals that use this approach, essentially, work 
as follows: A NN is trained with the colors of the image to 
segment; the image is processed by the NN; in a histogram 
the activation occurrences of each neuron are collected; and 
the number of clusters is defined by computing the number 
of peaks of the histogram [20–23]. The drawback with this 
approach is, again, the NN must be trained every time a 
new image is given. On the other hand, though different 
color spaces are employed, such as HSV, YIQ, L*a*b*, the 
intensity data of colors are employed; it may be difficult to 
compute the number of dominant colors for images with 
non-uniform illumination.

In this paper we present a method to compute auto-
matically the number of clusters the pixels are grouped 
using FCM by obtaining the number of dominant colors of 
the image. Our proposal is inspired on the human percep-
tion of color; humans can recognize the different sections 
or parts of an image or scene by the chromatic features 
of colors, without using intensity data, to some extent, 
because humans recognize the colors mainly by the chro-
maticity then by the intensity [25, 26]. For instance, the 
images (a) and (c) in Fig. 1 are the original images and the 
corresponding images (b) and (d) are obtained after nor-
malizing the intensity of the pixels. Though all the pixels 
of images (b) and (d) have the same intensity it is possible 

to appreciate the different sections of the images by the 
color features, because the chromaticity is not modified. 
Thus, in order to obtain a precise segmentation the hue of 
each segment must be homogenized because, as shown in 
images (b) and (d) in Fig. 1, within the sections there are 
different colors with similar hues.

Hence, by employing the chromatic data of the colors 
within the scene, the number of dominant colors of the 
image can be obtained; then, the number of clusters the 
data are grouped is also defined. On the other hand, it is 
important to remark that humans do not need to learn the 
colors every time they need to identify a color; they just 
employ the knowledge acquired previously. So, instead of 
training a NN every time an image is given to compute the 
number of dominant colors, we train a NN to recognize 
different colors by the chromatic features.

Therefore, the contribution of this paper is an approach 
to compute the number of clusters the pixels of a color 
image are grouped using FCM. An unsupervised NN is 
trained with chromaticity samples of different colors; it is 
important to mention that the NN is trained just once and 
it can be employed to process any image without training 
it again every time a new image is given. The image is 
processed by the NN using the chromatic data of the colors 
which are extracted by mapping, previously, the image to 
the HSV color space. The activation occurrences of each 
neuron of the NN are collected in a histogram; the number 
of neurons with the highest activation occurrences, peaks 
of the histogram, defines the number of clusters; and the 
image is segmented using the FCM with the number of 

Fig. 1   Original images (a) and 
(c); b and d images obtained 
after normalizing the inten-
sity of the pixels (color figure 
online)



Pattern Analysis and Applications	

1 3

clusters obtained, where the pixels are represented in the 
RGB space.

The paper is divided as follows: A review of related works 
is presented in Sect. 2; in Sect. 3 we introduce our proposed 
approach; the experiments performed are shown in Sect. 4; 
in Sect. 5 is performed a discussion; the paper closes with 
conclusions and future work in Sect. 6.

2 � Related works

The segmentation of color images is an issue addressed in 
different ways, where the cluster-based methods are often 
employed. Next, we show the papers found in the state of 
the art on color image segmentation.

Liu et al. [27] propose a segmentation method of mixture 
models of multivariate Chebyshev orthogonal polynomi-
als. This model is derived from the Fourier analysis, tensor 
product theory and the nonparametric mixture models of 
multivariate orthogonal polynomials. The mean integrated 
squared error is used to estimate the smoothing parameter 
for every model. The estimation of the number of density 
mixture components is solved employing the stochastic 
nonparametric expectation–maximization algorithm, so as 
to compute the orthogonal polynomial coefficient and weight 
of each model.

Sag and Cunkas [28] introduce a multiobjective optimiza-
tion algorithm; the segmentation is addressed as a clustering 
problem by grouping the image features, where the multi-
objective optimization algorithm is combined with seeded 
region growing. The main features of an image are color, 
texture and gradient magnitudes, which are measured by 
using the local homogeneity, Gabor filter and color spaces. 
The seeded region growing employs the extracted feature 
vector to classify the pixels spatially. The optimization 
algorithm determines the coordinates of the seed points and 
similarity difference of each region by optimizing a set of 
cluster validity indices so as to improve the quality of seg-
mentation. The segmentation is completed by merging small 
and similar regions.

Ong et al. [16] present for color image segmentation a 
two-stage hierarchical NN based on SOMs. The first stage 
of the network uses a two-dimensional feature map which 
captures the dominant colors of an image. The second stage 
employs a one-dimensional feature map to control the num-
ber of color clusters that is used for segmentation.

Salah et al. [29] propose a multiregion graph cut image 
partitioning via kernel mapping of the image data. The 
data of the image are transformed by the kernel function, 
so that the piecewise constant model of the graph cut 
becomes applicable; an objective function contains an origi-
nal data term to evaluate the deviation of the transformed 
data, within each segmentation region, from the piecewise 

constant model. A common kernel function is employed; the 
energy minimization consists in iterating image partitioning 
by graph cut iterations.

Mújica-Vargas et al. [12] present two improved FCM 
clustering algorithms with spatial constraints for color image 
segmentation. In order to obtain spatial data of the pixels the 
rank M-type and L-estimators are used. With these estima-
tors the local data of every color component in the RGB 
model are incorporated; the proposed approach is applied 
in the chromatic subspace in the IJK color space in order 
to overcome some limitations related to RGB model. Such 
estimators are involved in the FCM algorithm to provide 
robustness for the proposed segmentation techniques.

Tan and Isa [30] present an approach based on histogram 
thresholding; this approach can be applied in pattern rec-
ognition, particularly for color image segmentation. The 
approach employs the histogram thresholding technique to 
obtain all possible uniform regions in the color image. The 
compactness of the clusters forming the uniform regions is 
improved with FCM.

Huang et  al. [31] propose a fuzzy inference system 
designed by neuro-adaptive learning techniques; from a 
given image, the proposed system can reveal the probability 
of being a special color for each pixel through the image. 
The intensity of every pixel shows this probability in the 
gray-level output image. After selecting a threshold value, a 
binary image is computed, which can be used as a mask to 
segment desired color in the input image.

Guo and Sengur [14] apply neutrosophic set which stud-
ies the origin, nature and scope of neutralities. A directional 
α-mean operation is proposed to reduce the set indetermi-
nacy; the FCM algorithm is improved by integrating with 
neutrosophic set and employed to segment the color image. 
The membership computation and the clustering termination 
are redefined accordingly.

Khan and Jaffar [21] addressed the segmentation of color 
images as a clustering problem and a fixed length genetic 
algorithm. An objective function is proposed to evaluate the 
quality of the segmentation and the fitness of a chromosome. 
A self-organizing map is used to determine the number of 
segments in order to set the length of a chromosome auto-
matically. The initialization of the population is performed 
with an opposition-based strategy.

Khan et al. [23] apply a spatial fuzzy genetic algorithm 
for segmentation of color images; the performance of the 
algorithm is influenced by the number of clusters and the 
initialization of the cluster centers. These factors are over-
come using a progressive technique based on self-organizing 
maps to find the optimal number of clusters automatically. 
The cluster centers are set with the weights of the neurons 
represented in the histogram peaks.

Yang et al. [32] address the segmentation of color images 
as a problem of clustering texture features as multivariate 
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mixed data. The distribution of the texture features is mod-
eled using a mixture of Gaussian distribution. The mixture 
distribution is segmented with an agglomerative clustering 
algorithm derived from a lossy data compression approach; 
the algorithm employs either 2D texture filter banks or sim-
ple fixed-size windows to obtain texture features.

Nock and Nielsen [33] present an approach for image 
segmentation by region merging following a particular order 
in the choice of regions. The blend of algorithmics and sta-
tistics limits the segmentation error from both the qualitative 
and quantitative standpoints. The approach is approximated 
in linear time and space, leading to fast segmentation.

Wang and Dong [11] propose the multilevel low-rank 
approximation-based spectral clustering method to segment 
high-resolution images. The proposed method is a graph-
theoretic approach, which finds natural groups in a given 
data set. It approximates the multilevel low-rank matrix, the 
approximations to the affinity matrix and its subspace, as 
well as those for the Laplacian matrix and the Laplacian 
subspace, gains computational spacial efficiency.

Mignotte [34] introduces a segmentation approach based 
on a Markov random field fusion model which combines 
several segmentation results associated with simple cluster-
ing methods. The fusion model is based on the probabilis-
tic rand measure for comparing one segmentation result to 
one or more manual segmentations of the same image. This 
nonparametric measure allows to derive an appealing fusion 
model of label fields expressed as a Gibbs distribution. This 
Gibbs energy model encodes the binary constraints set given 
by the segmentation results to be fused.

Rashedi and Nezamabadi-por [35] propose an algorithm 
based on the theory of gravity called “stochastic feature-
based gravitational image segmentation.” The proposed 
algorithm employs color, texture and spatial data to partition 
the image. The algorithm is equipped with an operator called 
“escape” that is inspired by the concept of escape velocity in 
physics. A stochastic characteristic is incorporated into the 
algorithm which gives it the ability to search the image for 
finding the fittest pixels that are suitable for merging.

Mignotte [36] estimates a segmentation map into regions 
from a boundary representation. The author defines a non-
stationary model, MRF model, with long-range pairwise 
interactions whose potentials are estimated from the prob-
ability of the presence of an edge at each pair of pixels. 
The paper shows that an efficient and interesting strategy to 
complex region-based segmentation models consists in aver-
aging soft contour maps and using the MRF reconstruction 
model to achieve an accurate segmentation map into regions.

Huang et al. [24] introduce a clustering algorithm which 
maintains coherence of data in feature space; the algorithm 
works under the paradigm of clustering-then-labeling. 
Applied on the L*a*b* color space, the image is segmented 
by setting each pixel with its corresponding cluster. The 

algorithm is based on the theory of minimum description 
length, which is an effective approach to select automati-
cally the parameters for the proposed segmentation method.

Nadernejad and Sharifzadeh [13] propose an algorithm 
where bilateral filtering is employed as a kernel function to 
form a pixonal image. The bilateral filtering is a preprocess-
ing step that eliminates unnecessary details of the image 
and results in a few numbers of pixons. Later, the computed 
pixonal image is segmented using FCM.

Most of the reviewed works employ cluster-based meth-
ods; as mentioned before, the drawback with these meth-
ods is that the number of clusters must be defined a priori. 
Other works use unsupervised NN, but the NN employed 
are trained every time a novel image is given. That is, a 
NN trained with the colors of a given image cannot always 
recognize all the colors of a different image; hence, the NN 
must be trained with the colors of the new image.

Our proposal consists in training an unsupervised NN 
with chromaticity samples of different colors; the segmenta-
tion of a given image is obtained by processing the colors 
of such image by the already trained NN; and the number of 
clusters the image is segmented, using FCM, is obtained by 
computing the number of the most activated neurons of the 
NN. The benefits of our proposal are as follows: (1) It is not 
necessary to define a priori the number of clusters; (2) the 
way we train the NN can be employed to process any image 
without training it again; and (3) the color recognition is, 
to some extent, robust to non-uniform illumination. In the 
following section we introduce in detail our proposal for 
image segmentation.

3 � Proposed approach

We have stated before that humans recognize colors mainly 
by the chromatic features and then by the intensity [25, 26]. 
For instance, if the reader is asked to name the colors of the 
squares (a) and (b) in Fig. 2, it is almost sure that he/she 
would answer “green”; note that square (a) is brighter than 
square (b), but the chromaticity does not change; however, 
we can state that squares (a) and (b) are the same color but 
with different intensities. Now, if the reader is asked to name 
the colors of the squares (c) and (d) in Fig. 2, it is almost 
sure he/she would answer “red and pink”, respectively. In 
this example, the intensity is the same in both squares; the 
chromaticity difference between both the squares is small, 
but we can notice that the colors of squares (c) and (d) are 
not the same, though both squares have the same intensity.

It is important to remark, on the one hand, humans are 
able to recognize the different regions within a scene by the 
chromaticity features, as we claim in Sect. 1. On the other 
hand, humans do not need to learn the colors every time 
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they need to recognize a given color; they just employ the 
knowledge acquired previously.

Our proposal consists in emulating the human perception 
of color, by processing only the chromatic features of colors 
in order to compute the number of dominant colors within 
an image and then to segment the image using FCM, where 
the number of clusters the data are divided is defined by the 
number of dominant colors. The number of dominant colors 
is computed using an unsupervised NN trained with chro-
maticity samples of different colors; the NN processes the 
chromaticity of each image’s pixel; the number of the most 
often activated neurons defines the number of the dominant 
colors; therefore, with this number of clusters the data are 
grouped employing FCM. The steps of our proposal are as 
follows:

1.	 Train an unsupervised NN with chromaticity samples of 
different colors.

2.	 Map the given image to the HSV space and extract the 
chromaticity of each pixel’s color of the given image.

3.	 The chromaticity of each pixel is processed by the NN 
trained previously.

4.	 Collect in a histogram the activation occurrences of each 
neuron.

5.	 Obtain the number of clusters by computing the number 
of peaks of the histogram.

6.	 Update the number of clusters by comparing the chroma-
ticity of the neurons with the highest activation occur-
rences.

7.	 Segment the image with the number of clusters obtained 
in step 6 using FCM, where the colors of the pixels are 
represented in the RGB space.

The number of clusters is updated because there may be 
neurons with similar chromaticity and occurrence number; 
that is, the colors these neurons recognize are almost the 

same, so they belong to the same section and they must be 
grouped in the same cluster.

3.1 � Chromaticity extraction

The RGB color space is based on a Cartesian coordinate 
system where colors are vectors that extend from the origin, 
where black is located in the origin and white in the opposite 
corner to the origin, see Fig. 3.

The color of a pixel p is written as a linear combination 
of the basis vectors, red, green and blue [25]:

where rp , gp and bp are the red, green and blue compo-
nents, respectively, and the range of every component is 
[0, 255] ⊂ ℝ . The orientation and magnitude of a color vec-
tor define the chromaticity and the intensity of the color, 
respectively [25]. This color space faces two problems for 
color processing: (1) It is sensible to non-uniform illumina-
tion and (2) the colors cannot be compared accurately using 
the Euclidean distance [16, 25].

The HSV (hue, saturation and value) color space has been 
employed to process color images because the intensity is 
decoupled from the chromaticity [25, 26]; therefore, the 
color recognition is more robust before non-uniform illu-
mination. It is also claimed the representation of colors in 
this spaces emulates the human perception of color [26]. 
Figure 4 shows the cone shape of the HSV space.

The color of a pixel p is written as [25]:

where hp , sp and vp are the hue, saturation and value com-
ponents, respectively. The hue is the chromaticity, the satu-
ration is the distance to the glow axis of black–white, and 

(1)𝜙p = rpî + gpĵ + bpk̂,

(2)�p =
[
hp, sp, vp

]
,

Fig. 2   Color of squares (a) and (b) with the same chromaticity but 
with different intensities; color of squares (c) and (d) with different 
chromaticities but with the same intensity (color figure online)

Fig. 3   RGB color space (color figure online)
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value is the intensity. The real ranges of hue, saturation and 
value are [0, 2�] , [0, 1] and [0, 255] , respectively.

The chromaticity is modeled as a vector because of the 
case when the hue is almost 0 or 2� . Consider squares (c) 
and (d) shown in Fig. 2; their hue values are �∕100 and 
19�∕10 , respectively. Numerically, both values are very dif-
ferent, but the chromaticities of both squares are similar; if 
the chromaticity of both squares is classified only by the sca-
lar values, the chromaticity would be recognized as if they 
were very different. The problem is overcome as follows: Let 
�p be the color of a pixel in the HSV space represented as in 
Eq. (2), the chromaticity is modeled as follows:

It is important to mention that the color difference can-
not be measured using the Euclidean distance in the HSV 
space. But with our chromaticity characterization proposal it 
is possible to employ the Euclidean distance to compute the 
chromaticity difference between colors, because the chroma-
ticity is represented as unit-length vectors whose orientation 
defines the chromatic data.

3.2 � Neural network architecture and training

The idea of our proposal is that each neuron of the NN is 
trained to recognize a specific color; when the NN is already 
trained, each neuron is activated only by the color it learnt 
to recognize, or a similar one. Because we are interested in 
computing the number of times the neurons are activated we 
employ competitive NN (CNN) and self-organizing maps 
(SOMs). These kinds of unsupervised NN are based on find-
ing the index of the winning neuron before external stimuli; 
the neurons of the NN are trained such that they compete with 

(3)�p =
[
cos hp, sin hp

]
.

each other for the right to provide the output associated with 
an input vector.

The architecture of both the CNN and SOM is shown in 
Fig. 5, where �p is the external stimuli, W =

[
w1,… ,wn

]T is 
a matrix whose row vectors are the weight vectors of the neu-
rons, and compet is the transfer function that finds the index 
of the winning neuron.

The Euclidean distance is employed to measure the match 
between neuron wk and the external pattern �p . The neuron 
k whose weight vector wk is the closest to �p is declared the 
winner, that is:

For instance, in image (a) of Fig. 6 is shown a NN with 9 
neurons and their respective weight vectors. The NN is fed 
with the vector �p that represents the chromaticity of a color; 
the neurons are excited, using Eq. (4), by the input vector; the 
transfer function computes the index of the winning neuron; 
thus, the output of the NN is the number or index of the win-
ner neuron.

Image (b) of Fig. 6 shows the same NN but already trained, 
where the color of each neuron is the color that each neuron 
learnt to recognize. The NN receives the external stimuli rep-
resented by the vector �p ; in this example, a green-like color 
is fed, then all the neurons are excited, and the ninth neuron 
is the winner neuron because the color of neuron 9 is the 
most similar to the color represented by �p . In other words, 
‖w9 − 𝜓p‖ < ‖wi − 𝜓p‖, ∀i = 1,… , 8.

The difference between CNN and SOM lies in the training 
and the neuron array. In CNN, only the weight vector of the 
winning neuron is updated, while in SOM, where the neurons 
are set in a specific array, the weight vector of the winning 
neuron and the weight vectors of the neighbor neurons are 
also updated. A key advantage of SOM over CNN is topol-
ogy preservation of data. The weight vectors of the neurons 
are updated with the Kohonen learning rule [37], see Eq. (5).

where wk is the weight vector of the winning neuron k , �p is 
the external stimuli, 0 < 𝛼 < 1 is the learning rate, and w∗

k
 is 

the updated weight vector of the winning neuron k.

(4)‖wk − �p‖ = min
i

��wi − �p��.

(5)w∗
k
= (1 − �)wk + ��p,

Fig. 4   HSV color space (color figure online)

Fig. 5   Architecture of CNN and SOM (color figure online)
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Because of the fuzzy nature of color, it is not possible to 
recognize all the colors of the spectrum; hence, the color 
spectrum is discretized by dividing the spectrum in a finite 
number of colors. The NN employed for experiments are 
trained with the elements of the set � built with chromaticity 
samples as follows:

The number of colors the NN can recognize depends on 
the number of neurons the NN has; in the experimental stage 
section, we perform experiments with several NN with dif-
ferent sizes in order to determine an adequate size of the NN.

3.3 � Computing the number of clusters

Obtaining the number of clusters or sections of the image 
involves performing the following operations to each pixel 
of the image:

1.	 The color vector � =
[
r, g, b

]
 represented in the RGB 

space is mapped to the HSV space obtaining the vector 
� = [h, s, v].

2.	 Verify if the color of the pixel is black by comparing 
its intensity with respect to a threshold value. That is, if 
v ≤ �v then the occurrence for black is collected in the 
histogram and set � = [0, 0, 0] ; go to step 6.

3.	 If the color is not black then it is verified if the color 
of the pixel is white by comparing its saturation with 
respect to a threshold value. In other words, if s ≤ �s 
then the occurrence for white is collected in the histo-
gram and set � = [255, 255, 255] ; go to step 6.

4.	 If v > 𝛿v and s > 𝛿s then the color is a chromaticity and 
modeled as Eq. (3).

(6)
� =

{
�k =

[
cos �k, sin �k

]
|�k =

�

128
k ∶ k = 0, 1,… , 255

}
.

5.	 The vector � is computed and processed by the NN; the 
index of the winning neuron is collected in the histo-
gram.

6.	 End.

Here �s and �v are the thresholds for saturation and value, 
respectively. Because the NN are trained with chromaticity 
samples, they cannot recognize either white or black because 
both colors are not chromaticities. Black can be regarded as 
a low intensity color, that is, when v ≈ 0 ; analogously, white 
can be regarded as a low saturated color, i.e., when s ≈ 0.

There are no specific values to decide exactly when a 
color is black or white. Experimentally, we found suitable 
values for thresholds can be obtained with �s = �s − �s and 
�v = �v − �v , where �s and �v are the mean of the saturation 
and intensity values of the image, respectively, and �s and 
�v are the standard deviation of the saturation and intensity 
values of the image, respectively.

The number of clusters is defined by the number of bins 
of the histogram greater than zero. The number of bins of 
the histogram is equal to the number of neurons plus two; 
the last two bins correspond to the occurrences of white and 
black colors. In the histogram the activation occurrences of 
the neurons which are activated a few times are also col-
lected; it implies that there are irrelevant small parts within 
the image which are considered they form important parts 
of the image.

Therefore, there must be selected just the bins whose 
number is large enough to represent a significant section 
within the image. Thus, let P be the set of indexes of bins, 
of the normalized histogram, whose number is greater than 
or equal to the threshold �H:

(7)P = {k ∈ ℕ|H(k) ≥ �H},

Fig. 6   Example of a NN excited by the external stimuli �
p
 (color figure online)
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where H(k) is the value of the normalized histogram at bin 
k . Therefore, the total of clusters c is the number of elements 
of the set P ; in other words:

3.4 � Updating the number of clusters

As stated before, there may be neurons with almost the same 
activation occurrences and with similar chromaticity. Thus, 
there is a section within the image where the pixels have 
a common color that activates two neurons several times; 
therefore, such section of the image is segmented into two 
parts.

Because the colors are almost the same it means they 
must be grouped in the same cluster. Thus, the colors of the 
neurons with the highest activation occurrences are com-
pared by computing the orientation difference between the 
weight vectors of the neurons as follows:

where Δ�i,j is the orientation difference between the weight 
vectors �i and �j of neurons i and j , respectively; the set 
N = P ∩ {k ∈ ℕ|1 ≤ k ≤ n} , where n is the number of neu-
rons of the NN.

If the orientation difference is smaller than the threshold 
value �� then the number of clusters must be reduced. That 
is:

where ca is the number of similar colors. The final number 
of clusters ct is:

Finally, the image is segmented using the FCM with ct 
clusters. Note that the colors are represented in the HSV 
space so as to compute the number of clusters, while for 
segmentation, using the FCM, the colors are represented in 
the RGB space.

3.5 � Fuzzy c‑means clustering algorithm

FCM is a data clustering algorithm in which each data 
point belongs to a cluster to a degree specified by a mem-
bership grade. This gives the flexibility to express that 
data points can belong to more than one cluster [38]. Let 
� =

{
�1,… , �n

}
 be the set of feature data, and let c be 

the number of clusters. Then Uf =
(
ui,j

)
 is called a fuzzy 

cluster partition of � if 
∑n

i=1
ui,j > 0 , ∀j ∈ {1,… , c} and ∑c

j=1
ui,j = 1 , ∀i ∈ {1,… , n} hold. A fuzzy cluster model of 

(8)c = |P|.

(9)Δ�i,j = cos−1

�
�i ⋅ �

T
j

‖�i‖‖�j‖

�
, ∀i, j ∈ N, i ≠ j,

(10)ca =

{
ca + +, Δ𝜃i,j ≤ 𝛿𝜃
ca, Δ𝜃i,j > 𝛿𝜃 ,

(11)ct = c − ca.

� into c clusters is defined to be optimal when it minimizes 
the following objective function:

where m > 1 is a weighting exponent called the fuzzifier and 
‖�i − cj‖2 is the square of the Euclidean distance from fea-
ture vector �i to the center of the class cj . The objective func-
tion Jf  is alternately optimized using the parameters ui,j and 
cj by setting the derivate of Jf  with respect to the parameters 
equal to zero, considering the established constraint above. 
The resulting equations for the two iterative steps forming 
the FCM algorithm are given as follows:

4 � Experimental stage

We test our approach on images taken from the Berkeley 
segmentation database1 (BSD), which contains 300 color 
images of size 481 × 321 (or 321 × 481) pixels. The BSD 
is becoming the standard benchmark to test and evaluate 
quantitatively algorithms of color image segmentation [39]; 
hence, we employ the BSD so as to compare the perfor-
mance of our proposal with related works.

The number of colors a NN can recognize depends on 
its number of neurons, as we state in Sect. 3.2. Thus, in 
Sects. 4.1 and 4.2 experiments using CNN and SOM are 
performed, respectively, with different sizes; the images are 
segmented with the FCM ordinary algorithm presented in 
Sect. 3.5. In order to show the appearances of the images 
obtained with our approach, we select 20 images from the 
BSD, see Fig. 7.

The images obtained, after processing the images of 
Fig. 7, are shown in Sects. 4.1 and 4.2, depending on the 
kind of NN employed and their size; there is also shown the 
number of clusters computed for each image of Fig. 7.

4.1 � Experiments with competitive neural networks

There are performed experiments with three CNN with dif-
ferent sizes so as to determine an adequate size; the first, 

(12)Jf
�
�;Uf , c

�
=

n�

i=1

c�

j=1

um
i,j
‖�i − cj‖2,

(13)ui,j =
‖�i − cj‖

−
2

m−1

∑c

k=1
‖�i − ck‖

−
2

m−1

(14)cj =

∑n

i=1
um
i,j
�i

∑n

i=1
um
i,j

.

1  http://www.eecs.berke​ley.edu/Resea​rch/Proje​cts/CS/visio​n/bsds/.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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second and third CNN with 9, 16 and 25 neurons, respec-
tively. From now, we refer to the 9-, 16- and 25-neuron 
CNN as CNN9, CNN16 and CNN25, respectively. There 
is employed the threshold value �H = 0.001 ; the thresh-
old values employed to update the number of clusters are 
�� = 2�∕9 , �� = �∕6 and �� = �∕9 , for the CNN9, CNN16 
and CNN25, respectively.

Because the more neurons the NN have, the closer the 
neurons’ weighting vectors are, the smaller the threshold 
�� should be. In other words, the smaller the size of the NN 
is, the larger the threshold value is. The images obtained, 
by processing the images of Fig. 7, using the three CNN to 

compute the number of sections, are shown in Figs. 8, 9 and 
10, respectively.

Tables 1, 2 and 3 show the number of clusters c and the 
final number of clusters ct computed for each image, using 
the CNN9, CNN15 and CNN25, respectively.

The appearances of the images obtained using the three 
CNN are very similar because the number of clusters com-
puted is equal or almost the same using any of the CNN 
with the cluster number updating mechanism proposed in 
Sect. 3.4. For instance, in image 35010 there are computed 
5 clusters using the CNN9, while there are computed 4 clus-
ters employing the CNN16 and CNN25 although with the 

Fig. 7   Example images employed for experiments taken from the BSD (color figure online)
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CNN16 there are computed 5 clusters, but this number is 
updated to 4 clusters.

In images 118035, 160067 and 210088 there are com-
puted the same numbers of clusters using the three CNN. 
The images obtained have the same segments, but not always 
they keep the hues of the original image; for example, in 
image 210088 the fish does not keep the red hue, but it is 
segmented from the other parts of the image.

In image 35010 there are computed 5 clusters with the 
CNN9, while 4 clusters are computed employing the CNN16 
and CNN25; the images obtained are essentially the same, 
except the one obtained with the CNN9 where some parts 
of the leaves of the background have two different kinds of 
green hue. With the CNN9 and CNN25 there are computed 
6 clusters for image 67079, while 5 clusters are computed 
using the CNN16. The appearances of the segmented images 
are very similar; some parts of the building shown in the 
image, obtained using the CNN16, have different hues than 
that obtained employing the other NN.

In image 108073, the appearance of the image obtained 
with the CNN16 is different with respect to the images 
obtained using the CNN9 and CNN25, where the reflection 
of the tiger on the water is slightly different. In image 113044 
the horses are not segmented uniformly with a unique hue, 
but in the three images obtained the horses are segmented 
with the same colors; the segmentation difference can be 
appreciated in the background.

In image 374067, the segmentation of the green area cor-
responding to the grass image obtained using the CNN16 
is different to the ones obtained with the other CNN. The 
images obtained, by processing the image 198023, using 
the CNN9 and CNN16 are the same; in the image obtained 
using the CNN25, part of the hair is segmented from the 
head, while with the other CNN both parts are segmented 
as if they were the same object.

The segmentation differences between the images 
obtained, by processing the image 86000, can be appreci-
ated in the right side of the building. In image 241004, the 

Fig. 8   Images obtained by processing the images of Fig. 7 using CNN9 (color figure online)
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images obtained with the CNN16 and CNN25 have the same 
segmented parts with the same colors; in the resulting image 
using the CNN9, the area corresponding to grass is seg-
mented in green but also some parts of the rocks.

There are images where, though different numbers of 
clusters are computed, the resulting segmented images 
are almost the same. For instance, the segmented images 
obtained from image 296059 using the CNN9 and CNN16 
are the same because in both there are computed 6 clus-
ters. While in the image obtained with the CNN25 there 
are computed 8 clusters, in the resulting image the sky is 
segmented with two kinds of blue, and the segmentation 
of the elephants’ bodies is different from the segmentation 
obtained with the other CNN.

In the images 232038 and 36046 there are computed 6 
clusters using the CNN9 and CNN25, and 5 clusters with 
the CNN16. The segmented images are almost the same; the 
appearances of the segmented images obtained are very sim-
ilar in the respective three images obtained. In image 35070 

there are computed 4 clusters employing the CNN16 and 
CNN25, and 5 clusters with the CNN; the segmentation 
differences between the obtained images lies in the back-
ground. In image 97010 there are computed 8 clusters using 
the CNN9 and CNN25, and 6 clusters with the CNN16; it 
is easy to appreciate in the image obtained with the CNN16 
the sky is segmented uniformly, while in the other images 
the same area is segmented in two colors.

In image 157032 there are computed 7, 6 and 8 clus-
ters using the CNN9, CNN16 and CNN25, respectively. 
The segmentation difference is more notable in the 
image obtained employing the CNN25, where the areas 
corresponding to the table and the water are different 
from the resulting images using the other CNN. In the 
image  201080 there are computed 6, 5 and 8 clusters 
employing the CNN9, CNN16 and CNN25, respectively; 
the segmentation between the images obtained with the 
CNN9 and CNN16 is very similar. The segmented image 
using the CNN25 is different from the other resulting 

Fig. 9   Images obtained by processing the images of Fig. 7 using CNN16 (color figure online)
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images, where though the sky is still segmented into two 
parts, the shapes are not the same as the segmentation 
obtained with the other CNN; also, the other difference is 
the segmentation of the building’s roof. In image 124084 
there are computed 5 and 6 clusters employing the CNN9 

and CNN16, and CNN25, respectively. The segmented 
images obtained using the CNN9 and CNN16 are almost 
the same; the segmentation difference between the result-
ing image with the CNN25 and the other ones lies on the 
flowers’ petals.

Fig. 10   Images obtained by processing the images of Fig. 7 using CNN25 (color figure online)

Table 1   Number of clusters c 
and final number of clusters c

t
 

computed by processing the 
images of Fig. 7 using CNN9

Image c c
t

Image c c
t

35010 5 5 108073 6 6
374067 8 7 210088 8 7
241004 6 5 232038 7 6
118035 7 7 35070 6 5
157032 8 7 201080 6 6
67079 7 6 113044 6 6
198023 7 6 86000 11 8
296059 6 6 36046 7 6
3063 7 6 97010 9 8
160067 4 4 124084 5 5

Table 2   Number of clusters c 
and final number of clusters c

t
 

computed by processing the 
images of Fig. 7 using CNN16

Image c c
t

Image c c
t

35010 5 4 108073 7 5
374067 8 6 210088 9 7
241004 5 4 232038 7 5
118035 8 7 35070 5 4
157032 8 6 201080 7 5
67079 7 5 113044 7 6
198023 7 6 86000 9 7
296059 7 6 36046 7 5
3063 8 6 97010 8 6
160067 6 4 124084 6 5
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4.2 � Experiments with self‑organizing maps

Analogously to the experiments using the CNN, in this sec-
tion the experiments are performed with three SOMs with 
9, 16 and 25 neurons set in 3 × 3, 4 × 4 and 5 × 5 arrays, 

respectively. From now, we refer to the 3 × 3-, 4 × 4- and 
5 × 5-neuron SOMs as SOM3×3, SOM4×4 and SOM5×5, 
respectively. The values employed for the parameters �H and 
�� are the same values used for the experiments performed 
with the CNN. That is: �� = 2�∕9 , �� = �∕6 and �� = �∕9 
for the SOM3×3, SOM4×4 and SOM5×5, respectively, and 
�H = 0.001.

The images obtained, by processing the images of Fig. 7, 
using the SOM3×3, SOM4×4 and SOM5×5 to compute 
the number of sections, are shown in Figs. 11, 12 and 13, 
respectively. Tables 4, 5 and 6 show the number of clusters c 
and the final number of clusters ct computed for each image, 
using the SOM3×3, SOM4×4 and SOM5×5, respectively.

The segmented images obtained with the three SOMs 
are very alike because the number of clusters computed is 
almost the same using any of the three SOMs. Notice that 
the larger the SOM is, the higher the number of activated 
neurons is; therefore, the number of clusters computed is 
large. However, the number of clusters is reduced with the 

Table 3   Number of clusters c 
and final number of clusters c

t
 

computed by processing the 
images of Fig. 7 using CNN25

Image c c
t

Image c c
t

35010 4 4 108073 6 6
374067 7 7 210088 7 7
241004 4 4 232038 6 6
118035 7 7 35070 4 4
157032 8 8 201080 8 8
67079 6 6 113044 7 7
198023 8 8 86000 9 9
296059 8 8 36046 6 6
3063 7 7 97010 8 8
160067 4 4 124084 6 6

Fig. 11   Images obtained by processing the images of Fig. 7 using SOM3×3 (color figure online)
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updating mechanism proposed in Sect. 3.4, and the number 
of clusters obtained is almost the same as the number of 
clusters computed using the CNN.

Only with the image 201080 there are obtained the same 
numbers of clusters using the three SOMs. In image 35010 
there are computed 4 clusters using the SOM4×4 and 
SOM5×5, while 5 clusters are computed employing the 
SOM3×3. The appearances of the segmented images are 
very similar in the three images, but in the image obtained 
with the SOM3×3, some parts of the leaves of the back-
ground have two kinds of green hue; in the other resulting 
images the leaves have only one kind of green hue.

Six clusters are computed for the image 67079 using 
the SOM4×4 and SOM5×5, and 5 clusters are computed 
employing the SOM3×3. The segmented images are alike; 
the segmentation difference can be appreciated in the right 
part of the image obtained with the SOM3×3, where some 
pixels that correspond to the sky area are segmented with 
the color of the building.

In image 108073 five clusters are computed using the 
SOM3×3 and SOM4×4 and 6 clusters using the SOM5×5. 
The difference in segmentation lies on the reflection of the 
tiger on the water, which is different in the three images. 
Five clusters are computed for the image 113044 using the 
SOM3×3 and SOM5×5, and 4 clusters using the SOM4×4; 
the horses are segmented in the same fashion in all the 
resulting images, but the color of the image’s background 
obtained with the SOM4×4 is more homogeneous than that 
obtained with the other SOM.

Six clusters are computed, for image 374067, using 
the SOM3×3 and SOM4×4, and 7 clusters are com-
puted with the SOM5×5. The images obtained, using 
the SOM3×3 and SOM4×4, are the same; in the image 
obtained with the SOM5×5, the segmentation of the grass 
is more homogeneous than the other resulting images. 
In image  198023 seven clusters are computed using 
the SOM3×3, and 5 clusters using the SOM4×4 and 
SOM5×5; it is remarkable in the images obtained with 

Fig. 12   Images obtained by processing the images of Fig. 7 using SOM4×4 (color figure online)
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the SOM4×4 and SOM5×5 that the blue fringes of the 
sweater are segmented in gray color. A plausible explana-
tion is, because there are computed 5 clusters, the data are 
divided into a smaller number of groups, and the center of 

the blue color group is located in the gray color location 
within the RGB space.

Fig. 13   Images obtained by processing the images of Fig. 7 using SOM5×5 (color figure online)

Table 4   Number of clusters c 
and final number of clusters c

t
 

computed by processing the 
images of Fig. 7 using SOM3×3

Image c c
t

Image c c
t

35010 5 5 108073 6 5
374067 8 6 210088 7 5
241004 5 4 232038 8 6
118035 7 6 35070 5 4
157032 9 7 201080 7 6
67079 6 5 113044 6 5
198023 8 7 86000 9 7
296059 7 6 36046 8 6
3063 8 6 97010 9 7
160067 5 4 124084 5 5

Table 5   Number of clusters c and final number of clusters c
t
 com-

puted by processing the images of Fig. 7 using SOM4×4

Image c c
t

Image c c
t

35010 7 4 108073 8 5
374067 11 6 210088 10 5
241004 6 4 232038 10 6
118035 8 5 35070 7 4
157032 11 6 201080 9 6
67079 10 6 113044 7 4
198023 8 5 86000 13 9
296059 8 5 36046 7 5
3063 10 7 97010 12 8
160067 7 4 124084 6 3
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In image 210088 five clusters are computed using the 
SOM3×3 and SOM4×4 and 7 clusters using the SOM5×5. 
The images obtained are very similar, despite the differ-
ence in the number of clusters; the difference between the 
segmentations is not easy to appreciate, but the segmenta-
tion of the plants’ tips of the background is different in the 
three images. In image 86000 seven, nine and eight clusters 
are computed using the SOM3×3, SOM4×4 and SOM5×5, 
respectively; the images obtained are almost the same, the 
segmentation differences can be appreciated in the right 
part of the building, in which several parts are segmented in 
green instead of pink-like hue.

For image 241004, four clusters are computed employ-
ing the SOM3×3 and SOM4×4, and 5 clusters using the 
SOM5×5. The images obtained with the SOM3×3 and 
SOM4×4 are segmented in the same fashion, but in the 
image obtained with the SOM5×5, the area corresponding 
to the grass is segmented in green, while in the other images 
the same area is segmented with the same color of one of the 
background’s mountains. In image 296059 there are com-
puted 6, 5 and 7 clusters using the SOM3×3, SOM4×4 and 
SOM5×5, respectively. The segmentation differences can be 
appreciated in the sky, the elephants and the pastureland; the 
segmentation of the sky is the same in the image obtained 
with the SOM4×4 and SOM5×5; the segmentation of the 
elephants is almost the same using the images obtained with 
the SOM3×3 and SOM4×4; the segmentation of the pasture-
land is very alike in the images obtained with the SOM4×4 
and SOM5×5.

In image 232038 there are computed 6 clusters using 
the SOM3×3 and SOM4×4, and seven clusters employ-
ing the SOM5×5. The appearance of the images obtained 
with the SOM3×3 and SOM4×4 is the same, but the seg-
mentation using the SOM5×5 is different, and it can be 
appreciated that the sky is segmented in two parts, while 
in the same part of the other resulting images, sky area is 
segmented as an only one part. In image 36046 there are 

computed 6, 5 and 7 clusters using the SOM3×3, SOM4×4 
and SOM5×5, respectively. In the resulting image obtained 
using the SOM4×4, the grass area is segmented homoge-
neously, but the sky area is segmented in two parts; the 
same happens in the image obtained with the SOM5×5, 
but the segmentation of the grass area is not homogene-
ous, it resembles the segmentation, of the same area, of 
the image obtained with the SOM3×3, but in this image 
the sky is segmented homogeneously.

For image 118035, five clusters are computed employ-
ing the SOM4×4 and SOM5×5, and 6 clusters using the 
SOM3×3. The segmented images obtained using the 
SOM4×4 and SOM5×5 are the same; the segmented 
image using the SOM3×3 is different in the sky area, 
which is segmented in two parts, while in the other result-
ing images the same sky area is segmented homogene-
ously. In image 3063 there are computed 6 clusters using 
the SOM3×3 and seven clusters employing the SOM4×4 
and SOM5×5. The segmented images obtained using the 
SOM4×4 and SOM5×5 are the same; the resulting image 
obtained using the SOM3×3 is slightly different, from the 
other segmented images, because there are some parts of 
the airplane segmented in black.

In image 35070 there are computed 4 clusters using 
the SOM3×3 and SOM4×4, and 5 clusters employing 
the SOM5×5. The images obtained with the SOM3×3 
and SOM4×4 are the same, the image obtained using the 
SOM5×5 is a little different in the background segmenta-
tion. In image 97010 there are computed 7 clusters using 
the SOM3×3 and SOM5×5, and 8 clusters employing 
the SOM4×4. The segmentation differences between the 
images obtained are not easy to appreciate; a few differ-
ences can be observed in the straw package and the color 
of the building.

For image 157032, six clusters are computed using the 
SOM4×4 and SOM5×5, and seven clusters employing the 
SOM3×3. The appearance of the resulting images using 
the SOM4×4 and SOM5×5 are the same; the image seg-
mentation obtained with the SOM3×3 is different from the 
segmentation obtained with the other SOM. In the image 
obtained with the SOM3×3 the table is segmented in three 
colors, while in the other images the table is segmented in 
two colors; the segmentation of the area corresponding to 
the water is different in the image using the SOM3×3 from 
the segmentation of the same area using the other SOM.

In image 160067 there are computed 4 clusters using 
the SOM3×3 and SOM4×4, and 5 clusters employing the 
SOM5×5. The segmentation difference between the images 
obtained using the three SOM can be appreciated in the 
areas corresponding to the water and the ground, not in the 
animal. Notice that despite there are computed 4 clusters 
employing the SOM3×3 and SOM4×4 the resulting seg-
mented images are slightly different; a plausible explanation 

Table 6   Number of clusters c and final number of clusters c
t
 com-

puted by processing the images of Fig. 7 using SOM5×5

Image c c
t

Image c c
t

35010 7 4 108073 10 6
374067 15 7 210088 14 7
241004 8 5 232038 14 7
118035 11 5 35070 9 5
157032 17 6 201080 9 6
67079 11 6 113044 10 5
198023 12 5 86000 19 8
296059 12 7 36046 14 7
3063 13 7 97010 19 7
160067 8 5 124084 9 4
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is because of the initial values of the clusters’ centers when 
FCM are employed.

For image 124084, five, three and four clusters are com-
puted using the SOM3×3, SOM4×4 and SOM5×5, respec-
tively. It is easy to appreciate the segmentation differences 
of the images obtained for each SOM. In the image obtained 
with the SOM3×3 the flowers’ petals are segmented with 
some parts in green, and the background’s leaves are seg-
mented in two kinds of green hue. In the image obtained 
with the SOM4×4 the flowers’ petals and the background’s 
leaves are segmented homogeneously with their respective 
colors, but the parts in yellow are not segmented. In the 
resulting image using the SOM5×5 the flowers’ petals and 
the background’s leaves are segmented homogeneously with 
their respective colors, but several parts in yellow are suc-
cessfully segmented.

5 � Discussion

We have shown that it is possible to compute the number 
of dominant colors of the images with our proposal, where 
only the chromatic features of colors are employed. There 
are three issues we consider important to discuss: (1) com-
parison of the performance of our proposal before previous 
works; (2) adequate size of the NN; and (3) segmentation 
performance of our approach when the RGB color vectors 
are normalized before they are processed by the FCM. These 
three issues are addressed in the following subsections.

Regarding the third issue, the results obtained so far are 
achieved by processing the color vectors represented in the 
RGB space. As we claim before, in the RGB space the inten-
sity of the colors influences the clustering of the color vec-
tors. Hence, the images of Fig. 7 are processed again with 
the number of clusters computed with all the NN employed, 
where the color vectors are normalized before they are pro-
cessed by the FCM; thus, all the colors have the same inten-
sity and they are grouped by the chromatic features.

5.1 � Quantitative evaluation of the neural networks

The evaluation of color image segmentation algorithms has 
been subjective, but recently different metrics and defined 
ground truth images have been proposed in order to evaluate 
quantitatively the performance of segmentation algorithms 
of color images [10, 39]. The BSD is becoming the stand-
ard benchmark to compute the performance of color image 
segmentation algorithms. As mentioned before, the BSD is 
a database of natural images; for each of these images, the 
database provides between 4 and 9 human segmentations in 
the form of label maps which are employed as benchmark, 
ground truth images, to test quantitatively the performance 
of color image segmentation algorithms [39].

Several metrics have been proposed, but apparently 
there have not been already defined absolute metrics to 
evaluate the algorithms. We have observed in different 
papers [11, 12, 24, 34] that the probabilistic rand index 
(PRI) and variation of information (VOI) are becoming 
the standard metrics. Thus, we employ these metrics to 
evaluate our algorithm.

The PRI compares the image obtained from the tested 
algorithm to a set of manually segmented images. Let {
I1,… , Im

}
 and S be the ground truth set and the segmen-

tation provided by the tested algorithm, respectively. LIk
i
 is 

the label of pixel xi in the kth manually segmented image, 
and LS

i
 is the label of pixel xi in the tested segmentation. 

The PRI is computed with [12]:

where n is the number of pixels, ci,j is a Boolean function: 
ci,j = 1 i f  LS

i
= LS

j
 a n d  ci,j = 0  o t h e r w i s e ; 

pi,j =
∑m

k=1
T(i, j, k)∕m is the expected value of the Bernoulli 

distribution for the pixel pair, where T(i, j, k) = 1 if LIk
i
= L

Ik
j
 

and T(i, j, k) = 0 otherwise. The PRI is in the range [0, 1] 
where high values indicate a large similarity between the 
segmented images and the ground truth.

The VOI index measures the sum of loss of information 
and the gain between two clusters belonging to the lattice 
of possible partitions in the following way [40]:

where H is the entropy −
∑c

i=1

ni

n
log

ni

n
 , with ni being the 

number of points belonging to the i th cluster and c being the 
number of clusters, and F is the mutual information between 
two clusters defined as:

where cS and cIk are the number of clusters of S and Ik , 
respectively; P

(
Si, I

j

k

)
 is the joint probability distribution 

function of clusters i and j of images S and Ik , respectively; 
and P

(
Si
)
 and P

(
I
j

k

)
 are the probability density functions of 

clusters i and j of images S and Ik , respectively. The range 
of VOI is [0,∞) , where the smaller the VOI value is, the 
closer the segmentation obtained and the ground truth are.

All the images of the BSD are processed with our pro-
posal; the segmented images obtained with all the NN are 
evaluated with metrics PRI and VOI. Table 1 shows the 
average values of the quantitative evaluation of the seg-
mented images.

(13)PRI
(
S, Ik

)
=

2

n(n − 1)

∑

i,j,i<j

(
p
ci,j

i,j

(
1 − pi,j

)1−ci,j),

(14)VOI
(
S, Ik

)
= H(S) + H

(
Ik
)
− 2F

(
S, Ik

)
,

(15)F
(
S, Ik

)
=

cS∑

i=1

cIk∑

j=1

P
(
Si, I

j

k

)
log

P
(
Si, I

j

k

)

P
(
Si
)
P
(
I
j

k

) ,
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As given in Table 7, the average values of the segmenta-
tion evaluation are similar between all the NN employed; 
the explanation is that a similar number of clusters are com-
puted with the different NN we employ. The highest value 
is obtained with the SOM4×4.

Table 8 shows the average values of quantitative evalu-
ations of the segmented images using the proposals of pre-
vious works, where we compare the highest performance 
obtained with our approach, using the SOM4×4. References 
[20, 27, 29, 31–33, 41, 42] employ other methods than FCM; 
however, it lets us compare the performance of our approach 
with respect to other techniques. We claim our approach is 
competitive, to some extent, because the quantitative values 
obtained with our approach are close to the values reported 
in the related works.

It is important to mention the principal contribution of the 
references [12, 14, 21, 23, 30] focuses mainly on developing 
modified versions of the FCM algorithm, but not on deter-
mining automatically the number of clusters; in references 
[12, 14], the number of clusters is set by the user.

In [20] is presented a method to compute the number of 
clusters; a 4 × 4-neuron SOM is trained with the colors of the 
image, where the number of the dominant colors, number 
of clusters, is defined by computing the number of the most 
activated neurons, where the color vectors are grouped with 
the k-means algorithm. As we mentioned before, using the 
colors of the current image leads the SOM to be trained 
every time a new image is given; with our approach, the 
NN we employ are trained just one time, then they can be 
used to process any given image without training it again. 
The method proposed in [20], for computing the number of 
clusters, is also employed in [21–23]; in such references, 
there are employed different color spaces to represent and 
obtain the dominant colors, such as L*a*b*, YIQ and HSV, 
but they include intensity data of colors, so it may lead to 
obtaining the undesired effects of the RGB space before non-
uniform illumination.

For our experiments we use the ordinary FCM algorithm, 
presented in Sect. 3.5; we consider that if our approach is 
employed for the FCM algorithms developed in [12, 14, 21, 
23, 30], the quantitative evaluation of the segmented images 
may be improved.

5.2 � Size of the NN

The sizes of the NN employed in the experiments are pro-
posed empirically, but an important question is, “Which is 
the adequate size of the NN in order to recognize the domi-
nant colors of any image?” By setting the size or number of 
neurons of the NN, it defines the maximum number of colors 
the NN can recognize and thus also the maximum number 
of segments the image can be divided.

That is, using only FCM for image segmentation, the pix-
els are grouped strictly with the number of clusters defined 
a priori. With our approach the number of clusters varies 
depending on the number of the most activated neurons; 
therefore, the number of clusters computed is not always the 
number of neurons of the NN. For instance, an image with a 
few colors activates a few neurons of the NN several times, 
there are activated only the neurons that recognize the colors 
of the image; thus, the number of clusters is low.

Table 7   Average quantitative 
evaluation of the segmented 
images, by processing all the 
images of the BSD using our 
proposal

Bold represents the proposed 
methods that obtained the high-
est scores

NN PRI VOI

CNN9 0.7221 2.2910
CNN16 0.7221 2.3283
CNN25 0.7220 2.3128
SOM3×3 0.7169 2.2307
SOM4×4 0.7258 2.0968
SOM5×5 0.7224 2.2655

Table 8   Comparison of quantitative evaluation of values reported in 
related works

Bold represents the proposed methods that obtained the highest 
scores
Italic represents the highest values obtained with our proposal

References VOI PRI

Mújica-Vargas et al. [12] 0.8730 0.8640
Guo and Sengur [14] – 0.7720
Ilea and Whelan [20] – 0.8000
Khan and Jaffar [21] 1.9239 0.8332
Khan et al. [23] 0.9219 0.8961
Liu et al. [27] 2.2730 0.7390
Salah et al. [29] 2.4091 0.7650
Tan and Isa [30] 2.2500 0.7280
Huang et al. [31] 1.9510 0.7850
Yang et al. [32] 2.2035 0.7627
Nock and Nielsen [33] 2.0551 0.7681
Mignotte and Helou [41] 2.0100 0.8000
Mignotte [42] 1.8800 0.8100
Our proposal: SOM4×4 2.0968 0.7258

Table 9   Average number of clusters computed by processing all the 
images of the BSD

NN Final number of 
clusters

Total of clusters 
computed

Clusters 
updated

CNN9 5.9 6.6 0.7
CNN16 6.3 7.2 0.9
CNN25 6.5 6.5 0
SOM3×3 5.4 6.8 1.4
SOM4×4 5.1 8.7 3.6
SOM5×5 6.1 12 5.9
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Using the CNN, there are activated a few neurons and 
it is almost not necessary to adjust the number of clusters, 
while with the SOM there are activated several neurons, but 
when the approach is proposed for adjusting the number 
of clusters, the number of clusters is reduced almost to the 
same values computed using the CNN.

Table 9 shows, by computing all the images of the BSD, 
the average final number of clusters, the average of total 

of clusters computed and the average of clusters updated, 
in the second, third and fourth columns, respectively, for 
each of the NN employed. The average of the final number 
of clusters goes from 12 clusters, with the SOM5×5, up to 
6.5 clusters with the CNN25; when the number of clusters 
is updated the average final number of clusters is between 
6.5 and 5.1 with the CNN25 and the SOM4×4, respec-
tively. The SOM5×5 has, in average, the highest number of 

Table 10   Minimum and 
maximum of final number 
of clusters, total of clusters 
computed and clusters updated

NN Final number of clusters Total of clusters computed Clusters updated

Min Max Min Max Min Max

CNN9 3 9 3 11 0 3
CNN16 3 8 3 9 0 2
CNN25 3 10 3 10 0 0
SOM3×3 3 8 3 10 0 2
SOM4×4 3 8 3 16 0 9
SOM5×5 3 10 3 24 0 15

Fig. 14   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 1, where the color vectors of the pixels are 
normalized (color figure online)
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neurons activated, but also the highest number of clusters 
updated; hence, the final number of clusters, average, is 
similar to that obtained with the other NN.

By rounding the values obtained, the average of the 
total of clusters computed is between 6 and 12, but the 
average of final number of clusters is between 5 and 6. It 
is important to remark that not always 6 or 12 neurons of 
the NN are the most often excited or activated because, as 
mentioned in Sect. 3.3, the NN cannot recognize black or 
white. White and black pixels are counted independently; 
thus, the number of the most activated neurons may be 
less than 6 or 12.

Table 10 shows the minimum and maximum values of 
the final number of clusters, total of clusters computed and 
clusters updated for all the NN.

The minimum of the total of clusters computed is 3 for all 
the NN; it means it is required at least a NN with three neu-
rons. The maximum number of clusters computed is different 

depending on the NN. The total of clusters computed goes 
from 24 using the SOM5×5 up to 9 clusters employing the 
CNN16, but the final number of clusters computed goes 
from 10 with the SOM5×5 and CNN25 up to 8 with the 
CNN16, SOM3×3 and SOM4×4; the maximum number of 
clusters updated goes from 15 with the SOM5×5 up to 0 
using the CNN25. According to the data shown in Table 5, 
by employing the CNN the number of clusters updated is 
low, while using SOM the larger they are, the higher the 
number of clusters updated.

In the reviewed works there is not mentioned the num-
ber of clusters obtained with their proposal or if there is 
an optimal size for the SOM they use. We have found in 
references [20–23] the use of a 4 × 4-neuron SOM to com-
pute the number of dominant colors within the images. In 
Ref. [16] is employed a two-layered NN: The first layer is a 
16 × 16-neuron SOM and the second layer is a 20 × 1-neuron 
SOM, also to compute the dominant colors of the images. 

Fig. 15   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 2, where the color vectors of the pixels are 
normalized (color figure online)
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Mújica-Vargas et  al. [12] show the segmented images 
obtained by processing the BSD images 35010, 35070, 
118035, 124084 and 232038 using a FCM-based algorithm, 
where the numbers of clusters defined by the user for each 
image are 4, 3, 4, 5 and 5, respectively. Notice that these val-
ues are very close to the ones we obtain using our approach.

Considering the data of Tables 9 and 10, the number of 
clusters reported in the reviewed works, and the quantitative 
evaluation computed in Sect. 5.1, we propose to employ a 
4 × 4-neuron SOM as adequate size for this NN architecture, 
but using our proposal for cluster number updating.

5.3 � Normalizing the RGB color vectors

The images shown in Sects. 4.1 and 4.2, and the quanti-
tative evaluations are obtained by processing the colors 
represented in the RGB space. This space is sensitive to 

non-uniform illumination, as claimed in Sect. 3.1, and the 
chromatic data of colors can be altered by the intensity of 
colors. As we state in Introduction section, humans are 
able to recognize the different parts within a scene by the 
chromatic features of colors; if only the chromaticity is pro-
cessed, we obtain robustness to non-uniform illumination, to 
some extent, and the segmentation can be improved. Hence, 
we perform experiments using just the chromatic data of the 
color vectors; the chromaticity extraction is performed by 
normalizing the color vectors before they are grouped with 
FCM. In these experiments there are employed the number 
of clusters computed in Sects. 4.1 and 4.2.

In Sect. 3.1 we mention that in the RGB space the orien-
tation of the vectors characterizes the chromaticity and the 
intensity by the magnitude. Therefore, the chromatic data 
are extracted by normalizing the color vectors; that is, let {
𝜙1,… ,𝜙m

}
⊂ ℝ

3 be the set of color vectors represented 
in the RGB space of a given image, and the vectors are 

Fig. 16   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 3, where the color vectors of the pixels are 
normalized (color figure online)
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normalized with 𝜙̃i = 𝜙i∕‖𝜙i‖ . Thus, all the colors have the 
same intensity and the chromaticity does not change because 
the orientation of the color vectors is not modified.

In other words, let 𝜙̃ =
[
ru, gu, bu

]
 be a normalized vec-

tor, the direction cosines of this vector are cos 𝛼𝜙 = ru∕‖𝜙̃‖, 
cos 𝛽𝜙 = gu∕‖𝜙̃‖ and cos 𝜃𝜙 = bu∕‖𝜙̃‖ , but ‖𝜙̃‖ = 1 ; there-
fore, the components of the vector 𝜙̃ are the cosines of the 
angles between the vector and the basis vectors. Thus, the 
orientation of � is implicit in 𝜙̃ . Figures 14, 15, 16, 17, 18 
and 19 show the resulting images by segmenting the images 
of Fig. 7 with the number of clusters shown in Tables 1, 2, 
3, 4, 5 and 6, respectively.

The images obtained are similar; the colors of the seg-
mented areas are more homogeneous than the images shown 
in Sects. 4.1 and 4.2. The images obtained after processing 
the image 35010, with and without normalizing the color 
vectors, are almost the same. In the segmentation of the 

image 67079, the sky is segmented with two different kinds 
of blue hue; in image 108073, the reflection of the tiger over 
the water is more homogeneous, but the black lines of the 
tiger are not segmented. The segmentation of the horses of 
image 113044 is more homogeneous, also the segmentation 
of the background.

The hues of the green areas and the wall of the 
image 374067 are more homogeneous; the segmentation 
of image 198023 obtained with and without normalizing 
is almost the same, and more details of the woman’s face 
can be appreciated without normalizing the color vectors. 
The segmentation of the image 210088 is more notable with 
vector normalization; the hue of the fish is different from the 
background, but also the hue of the background’s vegeta-
tion is more homogeneous than the images obtained without 
normalizing.

The images obtained, by processing the image 86000, 
with and without normalizing the vectors, are very similar, 

Fig. 17   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 4, where the color vectors of the pixels are 
normalized (color figure online)
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but the hue of the right side of the building is more homo-
geneous than the image obtained without normalizing the 
color vectors. In image 241004, the segmentation differ-
ence between the resulting images with and without vector 
normalization lies on the background’s mountains; without 
normalization there are segmented two mountains, while 
with normalization the mountains are segmented as if they 
were only one.

The hue of the elephants of the image 296059 is more 
homogeneous; without normalizing the color vectors the 
elephants have several hues. In image 232038, the sky is 
segmented almost with the same hue, while without normali-
zation, the same area is segmented with two blue hues. The 
sky area of image 36046 is segmented with two blue hues 
without normalization; with vector normalization, the sky is 
segmented with only one kind of blue hue, but the water area 
is segmented with the same blue hue of the sky; the green 
areas are segmented with different green hues.

The church and the sky of image 118035 are segmented 
homogenously with only one kind of hue; without vector 
normalization, the same parts of the image are segmented 
with two kinds of hue, respectively. In image 3063 the sky 
area is segmented with almost the same blue hue; without 
vector normalization, the same area is segmented with sev-
eral kinds of blue hues. In the segmentation of image 35070, 
with vector normalization, it can be appreciated the insect, 
the leaf and the background; the hues of both the background 
and the leaf are more homogeneous than in the segmentation 
obtained without vector normalization.

With vector normalization, the sky area of image 97010 
is more homogeneous, also the straw cumulus. The trees 
behind the barn are segmented in green hue; the hue of the 
barn is more homogeneous. In image 157032 the water area 
is segmented with two kinds of blue hue, while without 
vector normalization the same area is segmented with three 

Fig. 18   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 5, where the color vectors of the pixels are 
normalized (color figure online)
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kinds of blue hue; the other areas are segmented similarly 
with or without vector normalization.

The segmentations of image 160067 with or without 
vector normalization are almost the same. In image 201080 
the hues of the sky and the building are more homogenous. 
The hues of both petals and leafs of the flowers shown in 
image 124084 are more homogenous than the segmentation 
obtained without vector normalization.

All the images of the BSD are processed, applying vector 
normalization, with the same number of clusters computed 
with our approach. The segmentation of the resulting images 
is evaluated quantitatively with the metrics PRI and VOI. 
Table 11 shows the average quantitative evaluation obtained.

The average quantitative evaluation is slightly higher than 
that obtained without normalizing the color vectors; the best 
segmentation values are, again, obtained with the SOM4×4. 
The quantitative evaluation improvement is because the 

areas of the images are segmented with more homogeneity, 
as shown in Figs. 14, 15, 16, 17, 18 and 19, than the images 
obtained without normalizing the color vectors.

6 � Conclusions and future work

In this paper we have introduced a proposal to compute the 
number of clusters the data, pixels, are grouped using fuzzy 
c-means. The number of clusters is computed with an unsu-
pervised neural network trained with chromaticity samples 
of different colors, where the number of the most activated 
neurons defines the number of clusters the color vectors of 
the image are grouped.

We have proposed a method to adjust the number of clus-
ters by comparing the similitude between the chromaticity 
of the most activated neurons. The quantitative evaluation 

Fig. 19   Images obtained by processing the images of Fig. 7 with number of clusters shown in Table 6, where the color vectors of the pixels are 
normalized (color figure online)
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of the segmented images obtained with our proposal is, to 
some extent, close to the values reported in previous works, 
where the Berkeley segmentation database is employed as 
benchmark. The segmentation, quantitative evaluation, is 
improved slightly by normalizing the color vectors before 
they are grouped with the fuzzy c-means algorithm. It is 
possible to determine the number of colors within an image 
if chromatic data of colors are employed; also, using just 
the chromaticity of colors, our approach is robust to non-
uniform illumination.

The neural network training we propose is performed just 
once, and then it can be used in any given image without 
training it again. According to quantitative evaluation and 
the average of the most activated neurons, the best perfor-
mance is obtained using a self-organizing map with 4 × 4 
neurons.

As future work, to implement the current proposal with 
the fuzzy c-means algorithms developed in previous works, 
we consider the quantitative evaluation of segmentation can 
be improved. Developing a fuzzy logic-based approach to 
determine whether the color of a pixel is black or white may 
be useful.
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