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The exploration of azide-enolate cycloaddition in the synthesis of novel Rufinamide analogs is reported
for the first time. A very simple procedure involving the use of b-ketonitriles as dipolarophiles afforded 5-
aril/heteroayl Rufinamide derivatives in two steps.

� 2018 Elsevier Ltd. All rights reserved.
Rufinamide, approved by the FDA in 2008 and marketed under
the brand name Banzel, is one of the best-selling triazol-based
antiepileptic pharmaceuticals used to treat Lennox-Gastaut syn-
drome. Since its discovery by Novartis pharmaceuticals, several
synthetic routes have been described in literature.1,2b As with
any drug leader, analogues have been developed and studied to
resolve problems of pharmacological resistance, to achieve greater
effectiveness, or to counteract adverse effects.

In this sense, only a few Rufinamide analogues (2–4, Scheme 1)
have been reported,2 and these involve the cycloaddition of a dipo-
larophile and phenyl azide 1. Unfortunately, these methods suffer
from drawbacks that limit their scope, such as the use of drastic
conditions (4 days at 150 �C), tediously obtainable trihalomethy-
lated enone precursors [Eq. (a) and (b)], a mixture of regioisomers
(2a/2b), or a stoichiometric excess of expensive and dangerous
reagents [e.g. trimethyl(trifluoromethyl)silane in Eq. (c)].

Evidently, these complex or cumbersome experimental proce-
dures are a consequence of the inefficiency of CuAAC (the most
reliable method for assembling triazoles)3 for the synthesis of
1,4,5-trisubstituted derivatives. Very recently,4 azide-enolate (3 + 2)
cycloaddition has emerged as a novel way to generate 1,2,3-tria-
zole moieties, facilitated by the use of a broad series of carbonyl
derivatives (e.g., ketones, esters, aldehydes and nitriles) that are
easily prepared and inexpensive. This represents a significant
advantage over the CuAAC, especially for producing 1,4,5-trisubsti-
tuted triazoles. Hence, we herein describe the utility of the azide–
enolate cycloaddition for the coupling of azides with b-ketonitriles
as the dipolarophile to achieve the synthesis of novel Rufinamide
analogues. [Eq. (e)].

The initial study began by obtaining starting materials,
b-ketonitriles5 5 and 2,6-difluorobenzyl azide6 1, according to pre-
viously described methodologies. Based on our experience in this
field, we decided to generate synthetic intermediates 5-CN substi-
tuted triazoles 6, which are novel products such as the Rufinamide
analogues reported in this paper, through an azide-enolate
cycloaddition (Scheme 2).7,8 Under mild reaction conditions, we
utilized DBU as base in order to promote the in situ formation of
the enolate from the corresponding b-ketonitriles 5. Triazole scaf-
folds were furnished in good yields (73–77%). Subsequently, the
hydrolysis of the nitrile group was attained by following the syn-
thetic procedure of Dash et al.,9,10 employing t-BuOK (3.0 eq) in
ter-butanol at room temperature. Hence, 5-aril/heteroaryl Rufi-
namide analogues were efficiently synthesized and isolated in
good yields (82–89%).
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Scheme 1. Background and proposed approach to the synthesis of novel Rufi-
namide analogues.

Scheme 2. Synthesis of Rufinamide analogues via azide-enolate cycloaddition. The
products were confirmed by 1H, 13C NMR and HRMS. Yields refer to chromato-
graphically pure isolated compounds.

Scheme 3. Proposed plausible mechanism for Rufinamide analogues intermediates
synthesis.
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Since the azide-enolate 1,3-dipolar cycloaddition is a very
well-known reaction,4 the regioselectivity has been understood
since its first report in 1902.11 Such regioselectivity between
1,3-dipole and dipolarophile can be explained by a type III
HOMO-LUMO interaction (EWG substituents in the 1,3-dipole
or EDG substituents in the dipolarophile).12 (Scheme 3). The
1,3-dipole has a low LUMO that overlaps with the HOMO of
the dipolarophile leading to a dipole LUMO-controlled process.
The overlap of molecular orbitals for all 1,3-dipolar cycloaddi-
tions is always suprafacial.

Unlike other 1,3-dipolar cycloadditions with exo interaction,
probably this reaction occurs through an endo-type interaction
due to a possible secondary orbital interaction between the p orbital
of O (dipolarophile) and the p orbital of the central N (1,3-dipole),
interactions widely known in the literature13 which does not lead
to bond, but it does make a contribution to lowering the energy of
this transition structure relative to that of the exo reaction, where it
must be absent.

In summary, a highly regioselective azide-enolate cycloaddition
has been implemented for the first time in the synthesis of novel
Rufinamide analogues under a simple protocol involving the use
of b-ketonitriles as dipolarophiles.
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