Mostrar el registro sencillo del objeto digital

dc.contributor.author Ruiz-Castilla, José-Sergio
dc.contributor.author Rangel-Cortes, Juan-José
dc.contributor.author García-Lamont, Farid
dc.contributor.author Trueba-Espinosa, Adrián
dc.date.accessioned 2019-09-12T19:24:18Z
dc.date.available 2019-09-12T19:24:18Z
dc.date.issued 2019-07-03
dc.identifier.isbn 978-3-030-26968-5
dc.identifier.isbn 978-3-030-26969-2
dc.identifier.uri http://hdl.handle.net/20.500.11799/104465
dc.description.abstract Skin cancer is detected in skin lesions. The most common skin cancer is melanoma. Skin cancer is increasing in several parts of the world. Due to the above, it is important to work on the classification of melanomas, in order to support the possible detection of malignant melanomas that cause skin cancer. We use Convolutional Neural Networks (CNN) for the classification of melanomas. We use images available from International Skin Imaging Collaboration (ISIC). We created a repository of 1000 images and did training with a sequential CNN to obtain two categories: benign and malignant melanomas. In the first instance we obtained results of 94.89% accuracy and 82.25% in validation. In the second instance we created another repository of 600 images for the method that we propose that consists in adding metadata within the same pixel matrix of the image in each RGB layer. The image was shown with a band of colors at the bottom. We made training with the CNN using images with metadata and achieved the results: 98.39% of accuracy and 79% of validation. Therefore, we conclude that adding the metadata repeatedly to the pixel matrix of the image improves the results of the classification. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights embargoedAccess es
dc.rights No aplica es
dc.rights embargoedAccess es
dc.rights No aplica es
dc.subject Melanomas es
dc.subject Convolutional neural networks es
dc.subject Metadata es
dc.subject Classification es
dc.subject Prediction es
dc.title CNN and Metadata for Classification of Benign and Malignant Melanomas es
dc.type Capítulo de Libro es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.progEstudios 663 es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • CNN and Metadata for Classification of Benign and Malignant Melanomas
  • Autor
  • Ruiz-Castilla, José-Sergio
  • Rangel-Cortes, Juan-José
  • García-Lamont, Farid
  • Trueba-Espinosa, Adrián
  • Fecha de publicación
  • 2019-07-03
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Melanomas
  • Convolutional neural networks
  • Metadata
  • Classification
  • Prediction
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

Buscar en RI


Buscar en RI

Usuario

Estadísticas