Mostrar el registro sencillo del objeto digital

dc.contributor.author García Lamont, Farid
dc.contributor.author Cervantes Canales, Jair
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author RUIZ CASTILLA, JOSE SERGIO
dc.creator García Lamont, Farid; 216477
dc.creator Cervantes Canales, Jair; 101829
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator RUIZ CASTILLA, JOSE SERGIO; 231221
dc.date.accessioned 2019-11-11T17:32:45Z
dc.date.available 2019-11-11T17:32:45Z
dc.date.issued 2019-11-05
dc.identifier.issn 1380-7501
dc.identifier.uri http://hdl.handle.net/20.500.11799/104869
dc.description.abstract Although the RGB space is accepted to represent colors, it is not adequate for color processing. In related works the colors are usually mapped to other color spaces more suitable for color processing, but it may imply an important computational load because of the non-linear operations involved to map the colors between spaces; nevertheless, it is common to find in the state-of-the-art works using the RGB space. In this paper we introduce an approach for color image segmentation, using the RGB space to represent and process colors; where the chromaticity and the intensity are processed separately, mimicking the human perception of color, reducing the underlying sensitiveness to intensity of the RGB space. We show the hue of colors can be processed by training a self-organizing map with chromaticity samples of the most saturated colors, where the training set is small but very representative; once the neural network is trained it can be employed to process any given image without training it again. We create an intensity channel by extracting the magnitudes of the color vectors; by using the Otsu method, we compute the threshold values to divide the intensity range in three classes. We perform experiments with the Berkeley segmentation database; in order to show the benefits of our proposal, we perform experiments with a neural network trained with different colors by subsampling the RGB space, where the chromaticity and the intensity are processed jointly. We evaluate and compare quantitatively the segmented images obtained with both approaches. We claim to obtain competitive results with respect to related works. es
dc.language.iso eng es
dc.publisher Multimedia Tools and Applications es
dc.relation.ispartofseries https://doi.org/10.1007/s11042-019-08278-6;
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject RGB space es
dc.subject Color image segmentation es
dc.subject Self-organizing maps es
dc.subject Otsu method es
dc.subject.classification BIOLOGÍA Y QUÍMICA
dc.title Color image segmentation using saturated RGB colors and decoupling the intensity from the hue es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 38 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 2


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Color image segmentation using saturated RGB colors and decoupling the intensity from the hue
  • Autor
  • García Lamont, Farid
  • Cervantes Canales, Jair
  • LOPEZ CHAU, ASDRUBAL
  • RUIZ CASTILLA, JOSE SERGIO
  • Fecha de publicación
  • 2019-11-05
  • Editor
  • Multimedia Tools and Applications
  • Tipo de documento
  • Artículo
  • Palabras clave
  • RGB space
  • Color image segmentation
  • Self-organizing maps
  • Otsu method
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas