Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes, Jair
dc.contributor.author GARCIA LAMONT, FARID
dc.contributor.author Rodriguez Mazahua, Lisbeth
dc.contributor.author Lopez, Asdrubal
dc.date.accessioned 2020-10-24T01:12:09Z
dc.date.available 2020-10-24T01:12:09Z
dc.date.issued 2020-05-08
dc.identifier.issn 0925-2312
dc.identifier.uri http://hdl.handle.net/20.500.11799/109329
dc.description.abstract In recent years, an enormous amount of research has been carried out on support vector machines (SVMs) and their application in several fields of science. SVMs are one of the most powerful and robust classification and regression algorithms in multiple fields of application. The SVM has been playing a significant role in pattern recognition which is an extensively popular and active research area among the researchers. Research in some fields where SVMs do not perform well has spurred development of other applications such as SVM for large data sets, SVM for multi classification and SVM for unbalanced data sets. Further, SVM has been integrated with other advanced methods such as evolve algorithms, to enhance the ability of classification and optimize parameters. SVM algorithms have gained recognition in research and applications in several scientific and engineering areas. This paper provides a brief introduction of SVMs, describes many applications and summarizes challenges and trends. Furthermore, limitations of SVMs will be identified. The future of SVMs will be discussed in conjunction with further applications. The applications of SVMs will be reviewed as well, especially in the some fields. es
dc.language.iso eng es
dc.publisher Neurocomputing es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject SVM es
dc.subject Classification es
dc.subject Machine learning es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title A comprehensive survey on support vector machine classification: Applications, challenges and trends es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.relation.vol 408
dc.relation.año 2020
dc.relation.doi https://doi.org/10.1016/j.neucom.2019.10.118


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • A comprehensive survey on support vector machine classification: Applications, challenges and trends
  • Autor
  • Cervantes, Jair
  • GARCIA LAMONT, FARID
  • Rodriguez Mazahua, Lisbeth
  • Lopez, Asdrubal
  • Fecha de publicación
  • 2020-05-08
  • Editor
  • Neurocomputing
  • Tipo de documento
  • Artículo
  • Palabras clave
  • SVM
  • Classification
  • Machine learning
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas