Mostrar el registro sencillo del objeto digital

dc.contributor.author HERNANDEZ CASTAÑEDA, ANGEL
dc.contributor.author GARCIA HERNANDEZ, RENE ARNULFO
dc.contributor.author Ledeneva, Yulia
dc.contributor.author MILLAN HERNANDEZ, CHRISTIAN EDUARDO
dc.creator HERNANDEZ CASTAÑEDA, ANGEL; 447784
dc.creator GARCIA HERNANDEZ, RENE ARNULFO; 202667
dc.creator Ledeneva, Yulia;#0000-0003-0766-542X
dc.creator MILLAN HERNANDEZ, CHRISTIAN EDUARDO; 633327
dc.date.accessioned 2020-11-13T04:31:36Z
dc.date.available 2020-11-13T04:31:36Z
dc.date.issued 2020-03-11
dc.identifier.uri http://hdl.handle.net/20.500.11799/109481
dc.description.abstract The automatic text summarization (ATS) task consists in automatically synthesizing a document to provide a condensed version of it. Creating a summary requires not only selecting the main topics of the sentences but also identifying the key relationships between these topics. Related works rank text units (mainly sentences) to select those that could form the summary. However, the resulting summaries may not include all the topics covered in the source text because important information may have been discarded. In addition, the semantic structure of documents has been barely explored in this field. Thus, this study proposes a new method for the ATS task that takes advantage of semantic information to improve keyword detection. This proposed method increases not only the coverage by clustering the sentences to identify the main topics in the source document but also the precision by detecting the keywords in the clusters. The experimental results of this work indicate that the proposed method outperformed previous methods with a standard collection. es
dc.language.iso eng es
dc.publisher IEEE Access es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Procesamiento de Lenguaje Natural es
dc.subject Lingüística Computacional es
dc.subject Automatic text summarization es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Extractive Automatic Text Summarization Based on Lexical-Semantic Keywords es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Internacional es
dc.cve.CenCos 31201 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Extractive Automatic Text Summarization Based on Lexical-Semantic Keywords
  • Autor
  • HERNANDEZ CASTAÑEDA, ANGEL
  • GARCIA HERNANDEZ, RENE ARNULFO
  • Ledeneva, Yulia
  • MILLAN HERNANDEZ, CHRISTIAN EDUARDO
  • Fecha de publicación
  • 2020-03-11
  • Editor
  • IEEE Access
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Procesamiento de Lenguaje Natural
  • Lingüística Computacional
  • Automatic text summarization
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas