Mostrar el registro sencillo del objeto digital

dc.contributor.author Niño Ayala, Daniel
dc.contributor.author Cervantes Canales, Jair
dc.contributor.author GARCIA LAMONT, FARID
dc.contributor.author Ayala de la Vega, Joel
dc.contributor.author Calderón Zavala, Guillermo
dc.date.accessioned 2020-11-14T08:46:52Z
dc.date.available 2020-11-14T08:46:52Z
dc.date.issued 2020-10-05
dc.identifier.isbn 978-3-030-60798-2
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/109515
dc.description.abstract The classification of leaves has gained popularity through the years, and a great variety of algorithms has been created to target these tasks, among those is the Deep Learning approach, which simplicity of learning from raw imputed data makes this task easy to target. However, not all methods are into the complex leaves classification task. In this work we propose a different approach in the way the leaf’s pictures are used to train the models, this is done by using the front and back face of a leaf as one element of the dataset. These pairs will be inputted into two shared convolutional layers, making the models to learn from a complete leaf. The results obtained in this work overpassed the accuracy obtained in related works. For this, we created a new complex leaves dataset, that consists of 6 different kinds of peach varieties, the dataset is available in this link (https://drive.google.com/drive/folders/1rWCr9DrknoK0HKFhNRavCVgZ5UKjU3hi). es
dc.language.iso eng es
dc.publisher Springer es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Complex leaves identification es
dc.subject Convolutional Neural Networks es
dc.subject Computer vision es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title A Hybrid Convolutional Neural Network for Complex Leaves Identification es
dc.type Capítulo de Libro es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 6145 es
dc.relation.doi 10.1007/978-3-030-60799-9_25


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • A Hybrid Convolutional Neural Network for Complex Leaves Identification
  • Autor
  • Niño Ayala, Daniel
  • Cervantes Canales, Jair
  • GARCIA LAMONT, FARID
  • Ayala de la Vega, Joel
  • Calderón Zavala, Guillermo
  • Fecha de publicación
  • 2020-10-05
  • Editor
  • Springer
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Complex leaves identification
  • Convolutional Neural Networks
  • Computer vision
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas