Resumen:
Statistical analysis was applied to optimize the electrochemical mineralization of ibuprofen with two boron-doped diamond (BDD) electrodes in a continuous electrochemical flow reactor under recirculation batch mode. A central composite rotatable (CCR) experimental design was used to analyze the e ect of initial pH (2.95–13.04), current intensity (2.66–4.34 A), and volumetric flow rate (0.16–1.84 L/min) and further optimized by response surface methodology (RSM) to obtain the maximum mineralization e ciency and the minimum specific energy consumption. A 91.6% mineralization e ciency (EM) of ibuprofen with a specific energy consumption (EC) of 4.36 KW h/g TOC within 7 h of treatment was achieved using the optimized operating parameters (pH0 = 12.29, I = 3.26 A, and Q of 1 L/min). Experimental results of RSM were fitted via a third-degree polynomial regression equation having the performance index determination coe cients (R2) of 0.8658 and 0.8468 for the EM and EC, respectively. The reduced root-mean-square error (RMSE) was 0.1038 and 0.1918 for EM and EC, respectively. This indicates an e cient predictive performance to optimize the operating parameters of the electrochemical flow reactor with desirability of 0.9999993. Besides, it was concluded that the optimized conditions allow to achieve a high percentage of ibuprofen mineralization (91.6%) and a cost of 0.002 USD $/L. Therefore, the assessed process is e cient for wastewater remediation.