Mostrar el registro sencillo del objeto digital

dc.contributor.author Natividad, Reyna
dc.contributor.author Gómez-Oliván, Leobardo
dc.contributor.author Romero, Rubí
dc.contributor.author Roa Morales, Gabriela
dc.contributor.author Peralta Reyes, Ever
dc.contributor.author Santana Martínez, Germán
dc.date.accessioned 2021-02-09T02:38:22Z
dc.date.available 2021-02-09T02:38:22Z
dc.date.issued 2021-02-01
dc.identifier.uri http://hdl.handle.net/20.500.11799/109833
dc.description Es un artículo arbitrado publicado en una revista indizada en JCR. es
dc.description.abstract In the context of water remediation, advanced oxidation processes have been proven to be an effective solution. In most of the cases, however, the reaction systems are usually highly expensive, because of the addition of chemical substances or energy consumption. This usually constrains their application at an industrial scale. This has motivated several researchers to develop technologies able not only to intensify the processes but able also to increase the sustainability of the whole process. In this context, this work aimed to assess a relatively novel technology, a Downflow Bubble Column Electrochemical Reactor (DBCER), in the mineralization of a rather typical organic pollutant, phenol. The studied variables were: current density (20-60 mA/cm2), electrolyte concentration (0.025-0.1 M), liquid recirculation rate (4.7 and 6 L/min) and pH (3 and 7). The response variables were total organic carbon (TOC), phenol and by-products concentration, oxidant species concentration (O2, H2O2 and O3). It was demonstrated that the DBCER with BDD electrodes allows not only the production of •OH, but also the in situ production of O2, H2O2 and O3 (without the addition of any gas) and more importantly their utilization to conduct an electro-peroxone process. The highest mineralization degree was around 75% under pH 3, 60 mA/cm2, 4.7 L/min and an electrolyte concentration of 0.05 M. Under these conditions, it was figured out that the phenol oxidation occurs mainly by ozone attack and the main remaining compound was oxalic acid. Although at pH 7 the mineralization degree was lower than at pH 3, it was demonstrated by a biotoxicity study on Cyprinus carpio that the original toxicity was significantly decreased. es
dc.description.sponsorship CONACYT (168305 Y 269093) es
dc.language.iso eng es
dc.publisher Journal of Environmental Chemical Engineering es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0 es
dc.subject Procesos de Oxidación Avanzada es
dc.subject Electro-oxidación es
dc.subject Ozonación es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Downflow Bubble Column Electrochemical Reactor (DBCER): In-situ production of H2O2 and O3 to conduct Electroperoxone Process es
dc.type Artículo es
dc.provenance Científica es
dc.road Verde es
dc.organismo Química es
dc.ambito Nacional es
dc.cve.CenCos 20403 es
dc.cve.progEstudios 724 es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Downflow Bubble Column Electrochemical Reactor (DBCER): In-situ production of H2O2 and O3 to conduct Electroperoxone Process
  • Autor
  • Natividad, Reyna
  • Gómez-Oliván, Leobardo
  • Romero, Rubí
  • Roa Morales, Gabriela
  • Peralta Reyes, Ever
  • Santana Martínez, Germán
  • Fecha de publicación
  • 2021-02-01
  • Editor
  • Journal of Environmental Chemical Engineering
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Procesos de Oxidación Avanzada
  • Electro-oxidación
  • Ozonación
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas