Mostrar el registro sencillo del objeto digital

dc.contributor Sánchez Garreta, José Salvador
dc.contributor.advisor Valdovinos Rosas, Rosa María ; 211910
dc.contributor.advisor Sánchez Garreta, José Salvador;#0000-0003-1053-4658
dc.contributor.author Gúzman Ponce, Angélica
dc.creator Gúzman Ponce, Angélica; 702275
dc.date.accessioned 2021-05-14T00:41:41Z
dc.date.available 2021-05-14T00:41:41Z
dc.date.issued 2021-03-17
dc.identifier.uri http://hdl.handle.net/20.500.11799/110464
dc.description Doctoral thesis es
dc.description.abstract Nowadays, knowledge extraction from data is an essential task for decisionmaking in many areas. However, the data sets commonly present some negative problems (complexities) that decrease the performance in the knowledge extraction process. The imbalanced distribution of data between classes and the presence of noise and/or class overlap are data intrinsic characteristics that frequently decrease the performance of the knowledge extraction because data are assumed to keep a uniform distribution and free from any other problem. All these issues have been studied in Pattern Recognition and Data Mining, because of their impact on the performance of the learning models. Thus this Ph.D. thesis addresses class imbalance, class overlap and/or noise through techniques that reduce and clean the most represented class. Among the solutions to handle with the class imbalance problem, new algorithms based on graphs are proposed. This idea arises from the fact that many real-world problems (network analysis, chemical models, remote sensing, among others) have been tackled by using graph-based strategies, in which the problem is transformed in terms of vertices and edges. Keeping this in mind, the proposals presented in this Ph.D. thesis consider the most represented class as as a complete graph in such a way that a representative subset of majority class instances is obtained through reduction criteria. Regarding the data sets with class imbalance and class overlap and/or noise, the proposals include the use of clustering algorithms as a cleaning strategy. It is well known that these algorithms are used to group instances according to similar characteristics; however, the proposal here presented makes use of their ability to detect noisy instances. By this, the application of a clustering algorithm is carried out before facing the class imbalance. As a further extension to the proposals presented in this Ph.D. thesis and due to the growing interest in Big Data problems, the last part of this report introduces a graph-based algorithm to handle class imbalance in large-scale data sets. es
dc.description.sponsorship Becas nacionales del CONACYT es
dc.language.iso spa es
dc.publisher Universidad Autónoma del Estado de México es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject Research Subject Categories es
dc.subject Graphs es
dc.subject Pattern Recognition es
dc.subject Data mining es
dc.subject Clustering es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Nuevos Algoritmos Basados en Grafos y Clustering para el Tratamiento de Complejidades de los Datos es
dc.title.alternative New Algorithms Based on Graphs and Clustering for handling Data Complexities es
dc.type Tesis de Doctorado es
dc.provenance Científica es
dc.road Verde es
dc.organismo Ingeniería es
dc.ambito Internacional es
dc.cve.CenCos 20501 es
dc.cve.progEstudios 1009 es
dc.modalidad Tesis es
dc.audience students es
dc.audience researchers es
dc.type.conacyt doctoralThesis
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Nuevos Algoritmos Basados en Grafos y Clustering para el Tratamiento de Complejidades de los Datos
  • Autor
  • Gúzman Ponce, Angélica
  • Director(es) de tesis, compilador(es) o coordinador(es)
  • Sánchez Garreta, José Salvador
  • Fecha de publicación
  • 2021-03-17
  • Editor
  • Universidad Autónoma del Estado de México
  • Tipo de documento
  • Tesis de Doctorado
  • Palabras clave
  • Research Subject Categories
  • Graphs
  • Pattern Recognition
  • Data mining
  • Clustering
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas