Resumen:
In this paper, we present a new method for emotion recognition from facial expressions. The proposed algorithm concentrates on only two specific areas (eyes and mouth), reducing features and descriptors and focusing only on these areas. The algorithm extracts characteristics from these two regions of the face and, in a subsequent process, eliminates the less significant characteristics or those that introduce noise into the classifier. The system allows obtaining a reduced set of features to improve the performance of the classification. In the experiments carried out, we obtain precisions of 99.56%. We evaluated the proposed algorithm on two benchmark datasets; we find that SVM consistently outperforms traditional machine learning techniques.