Mostrar el registro sencillo del objeto digital

dc.contributor.author GOMEZ RAMOS, MARCOS YAMIR
dc.contributor.author RUIZ CASTILLA, JOSE SERGIO
dc.contributor.author García Lamont, Farid
dc.creator GOMEZ RAMOS, MARCOS YAMIR; 622036
dc.creator RUIZ CASTILLA, JOSE SERGIO; 231221
dc.creator García Lamont, Farid; 216477
dc.date.accessioned 2021-10-02T05:32:18Z
dc.date.available 2021-10-02T05:32:18Z
dc.date.issued 2021-09-11
dc.identifier.issn 2007-1558
dc.identifier.uri http://hdl.handle.net/20.500.11799/111059
dc.description.abstract The corn crop is very important in Mexico. Corn is fertilized manually or with machinery. When fertilization is manual, it consists of depositing fertilizer to each corn plant. Whereas machine fertilization, involve of dropping fertilizer along the furrow continuously. Manual fertilization is effective, but it is expensive and time-consuming. Machine fertilization can be inefficient, because fertilizer is deposited in the weeds or where there is no corn plant. When the fertilizer is not absorbed by the plant, it can damage the aquifers. This project presents algorithms to classify corn plants and weeds, hoping to contribute to automated fertilization or identified weeds to apply herbicide or eliminate. We took hundreds of pictures of corn plants and weeds in corn crops. The images were segmented using the Otsu method. As well as, the images were processed with the PCA algorithm. We apply classification algorithms such as Naive Bayes, Random Forest, SVM, KNN and Backpropagation. We also apply a convolutional neural network (CNN). We finally got 99.97% as the best result with the Backpropagation classifier. es
dc.language.iso eng es
dc.publisher International Journal of Combinatorial Optimization Problems and Informatics es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Classification es
dc.subject Backpropagation es
dc.subject Segmentation es
dc.subject Corn plants es
dc.subject Weeds es
dc.subject Otsu es
dc.subject PCA es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Classification of corn plants and weed based on characteristics of color and texture using methods of segmentation Otsu and PCA es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 1009 es
dc.audience students es
dc.audience researchers es
dc.identificator 7
dc.relation.vol 12
dc.relation.no 3


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Classification of corn plants and weed based on characteristics of color and texture using methods of segmentation Otsu and PCA
  • Autor
  • GOMEZ RAMOS, MARCOS YAMIR
  • RUIZ CASTILLA, JOSE SERGIO
  • García Lamont, Farid
  • Fecha de publicación
  • 2021-09-11
  • Editor
  • International Journal of Combinatorial Optimization Problems and Informatics
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Classification
  • Backpropagation
  • Segmentation
  • Corn plants
  • Weeds
  • Otsu
  • PCA
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas