Resumen:
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitro- thion, from ng/L to low !g/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational es- cape response of zebra!sh larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a signi!cant non-monotonic concentration-response relationship. Once determined that environmen- tal concentrations of fenitrothion were neurotoxic for zebra!sh larvae, a computational analysis identi!ed poten- tial protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a signi!cant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a signi!cant environmental risk for !sh communities.