Mostrar el registro sencillo del objeto digital

dc.contributor.author GARCIA LAMONT, FARID
dc.contributor.author Alvarado, Matias
dc.contributor.author López-Chau, Asdrúbal
dc.contributor.author Cervantes Canales, Jair
dc.date.accessioned 2022-01-13T03:40:20Z
dc.date.available 2022-01-13T03:40:20Z
dc.date.issued 2021-10-30
dc.identifier.issn 1520-6378
dc.identifier.uri http://hdl.handle.net/20.500.11799/111837
dc.description.abstract In this study, we present a nucleus segmentation proposal of white blood cells (WBCs) using chromatic features. It is human inspired on perception of color: a person locates the nucleus of the WBCs by the chromatic contrast between the nucleus and the other elements of the blood smear. To implement that, we segment the nucleus by selecting the pixels with high chromatic variance. First, an unsupervised neural network, which was trained offline to recognize different colors is applied to the images. Thereby, the hue of the pixels is normalized, and the chromatic variance is accurately computed. Processing the hue and using the unsupervised neural network the brightness and staining variations are robustly estimated. In previous related works, the color components are processed separately as uncorrelated intensity channels, and the mathematical operations are selected intuitively. Unlike that, we use color as a feature without separating the hue components, keeping their correlation, so the formal treat becomes systematic. Experiments use the RGB and HSV spaces with three public image databases: ALL-IDB2, CellaVision, and JTSC. A pixel-level segmentation evaluation is performed by comparing the segmented images with the ground truth. Our proposal competes with current methods since the values in accuracy, specificity, precision, sensitivity, dice coefficient, kappa index, and true positive rate all are similar to or improved upon the state of the art. The performance of our approach is classified as excellent regarding the kappa index value, and it detects at least 80% of the cells with an average dice coefficient larger than 0.9. es
dc.language.iso eng es
dc.publisher Wiley es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Chromaticity es
dc.subject Color recognition es
dc.subject Color spaces es
dc.subject Image segmentation es
dc.subject White blood cells es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Efficient nucleus segmentation of white blood cells mimicking the human perception of color es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.relation.doi 10.1002/col.22752


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Efficient nucleus segmentation of white blood cells mimicking the human perception of color
  • Autor
  • GARCIA LAMONT, FARID
  • Alvarado, Matias
  • López-Chau, Asdrúbal
  • Cervantes Canales, Jair
  • Fecha de publicación
  • 2021-10-30
  • Editor
  • Wiley
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Chromaticity
  • Color recognition
  • Color spaces
  • Image segmentation
  • White blood cells
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas