Mostrar el registro sencillo del objeto digital

dc.contributor.author García Lamont, Farid
dc.contributor.author Alvarado, Matías
dc.contributor.author Cervantes Canales, Jair
dc.creator García Lamont, Farid; 216477
dc.creator Alvarado, Matías;#0000-0003-2853-7451
dc.creator Cervantes Canales, Jair; 101829
dc.date.accessioned 2022-01-13T03:45:21Z
dc.date.available 2022-01-13T03:45:21Z
dc.date.issued 2021-12-31
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/20.500.11799/111838
dc.description.abstract Leukocyte (white blood cell, WBC) count is an essential factor that physicians use to diagnose infections and provide adequate treatment. Currently, WBC count is determined manually or semi-automatically, which often leads to miscounting. In this paper, we propose an automated method that uses a bioinspired segmentation mimicking the human perception of color. It is based on the claim that a person can locate WBCs in a blood smear image via the high chromatic contrast. First, by applying principal component analysis over RGB, HSV, and L*a*b* spaces, with specific combinations, pixels of leukocytes present high chromatic variance; this results in increased contrast with the average hue of the other blood smear elements. Second, chromaticity is processed as a feature, without separating hue components; this is different to most of the current automation that perform mathematical operations between hue components in an intuitive way. As a result of this systematic method, WBC recognition is computationally efficient, overlapping WBCs are separated, and the final count is more precise. In experiments with the ALL-IDB benchmark, the performance of the proposed segmentation was assessed by comparing the WBC from the processed images with the ground truth. Compared with previous methods, the proposed method achieved similar results in sensitivity and precision and approximately 0.2% higher specificity and 0.3% higher accuracy for pixel classification in the segmentation stage; as well, the counting results are similar to previous works. es
dc.language.iso eng es
dc.publisher PLOS ONE es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0
dc.subject White blood cells es
dc.subject Image segmentation es
dc.subject Counting es
dc.subject Chromaticity es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Systematic segmentation method based on PCA of image hue features for white blood cell counting es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7
dc.relation.vol 16
dc.relation.no 12
dc.relation.doi 10.1371/journal.pone.0261857


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Systematic segmentation method based on PCA of image hue features for white blood cell counting
  • Autor
  • García Lamont, Farid
  • Alvarado, Matías
  • Cervantes Canales, Jair
  • Fecha de publicación
  • 2021-12-31
  • Editor
  • PLOS ONE
  • Tipo de documento
  • Artículo
  • Palabras clave
  • White blood cells
  • Image segmentation
  • Counting
  • Chromaticity
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas