Mostrar el registro sencillo del objeto digital

dc.contributor.author CERVANTES BAZAN, JOSUE VICENTE
dc.contributor.author CUEVAS RASGADO, ALMA DELIA
dc.contributor.author ROJAS CARDENAS, LUIS MARTIN
dc.contributor.author LAZCANO SALAS, SAUL
dc.contributor.author García Lamont, Farid
dc.contributor.author SORIANO AVENDAÑO, LUIS ARTURO
dc.contributor.author RUBIO AVILA, JOSE DE JESUS
dc.contributor.author PACHECO MARTINEZ, JAIME
dc.creator CERVANTES BAZAN, JOSUE VICENTE; 387370
dc.creator CUEVAS RASGADO, ALMA DELIA; 162873
dc.creator ROJAS CARDENAS, LUIS MARTIN; 12587
dc.creator LAZCANO SALAS, SAUL; 45842
dc.creator García Lamont, Farid; 216477
dc.creator SORIANO AVENDAÑO, LUIS ARTURO; 335718
dc.creator RUBIO AVILA, JOSE DE JESUS; 42798
dc.creator PACHECO MARTINEZ, JAIME; 123705
dc.date.accessioned 2022-05-17T02:31:39Z
dc.date.available 2022-05-17T02:31:39Z
dc.date.issued 2022-02-25
dc.identifier.issn 20799292
dc.identifier.uri http://hdl.handle.net/20.500.11799/113001
dc.description Articulo científico que describe los resultados de la tesis doctoral PROTOCOLO CROSS-LAYER PROACTIVO BASADO EN TÉCNICAS DE INTELIGENCIA ARTIFICIAL PARA HANDOVER SIN FISURAS EN AMBIENTES MÓVILES WLAN. es
dc.description.abstract In recent years, modern technology has been increasing, and this has grown a derivate in big challenges related to the network and application infrastructures. New devices have been providing more high functionalities to users than ever before; however, these devices depend on a high functionality of network in order to ensure a correct functioning ability over applications. This is essential for mobile networking systems to evolve in order to meet the future requirements of capacity, coverage, and data rate. In addition, when a network problem happens, it could be converted into somethingmore disastrous and difficult to solve. A crucial point is the network physical change and the difficulties, such as loss continuity of services and the decision to select the future network to be connected. In this article, a new framework is proposed to forecast a future network to be connected through a mobile node in WLAN environments. The proposed framework considers a decision-making process based on five classifiers and the user’s position and acceleration data in order to anticipate the network change, reaching up to 96.75% accuracy in predicting the connection of this future network. In this way, an early change of network is obtained without packet and time loss during the network change. es
dc.description.sponsorship CONACYT es
dc.language.iso eng es
dc.publisher MDPI es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject cross-layer es
dc.subject handover; es
dc.subject handoff decision es
dc.subject naive bayes es
dc.subject logistic regression es
dc.subject decision tree es
dc.subject k-nearest neighbors es
dc.subject support-vector machines es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Proactive Cross-Layer Framework Based on Classification Techniques for Handover Decision on WLAN Environments es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Nacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 1009 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7
dc.relation.vol 11


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Proactive Cross-Layer Framework Based on Classification Techniques for Handover Decision on WLAN Environments
  • Autor
  • CERVANTES BAZAN, JOSUE VICENTE
  • CUEVAS RASGADO, ALMA DELIA
  • ROJAS CARDENAS, LUIS MARTIN
  • LAZCANO SALAS, SAUL
  • García Lamont, Farid
  • SORIANO AVENDAÑO, LUIS ARTURO
  • RUBIO AVILA, JOSE DE JESUS
  • PACHECO MARTINEZ, JAIME
  • Fecha de publicación
  • 2022-02-25
  • Editor
  • MDPI
  • Tipo de documento
  • Artículo
  • Palabras clave
  • cross-layer
  • handover;
  • handoff decision
  • naive bayes
  • logistic regression
  • decision tree
  • k-nearest neighbors
  • support-vector machines
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas