Mostrar el registro sencillo del objeto digital

dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author Rodríguez Mazahua, Lisbeth
dc.contributor.author García Lamont, Farid
dc.contributor.author QUINTANA LOPEZ, MARICELA
dc.contributor.author ROJAS HERNANDEZ, ALBERTO
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator Rodríguez Mazahua, Lisbeth; 268183
dc.creator García Lamont, Farid; 216477
dc.creator QUINTANA LOPEZ, MARICELA; 242369
dc.creator ROJAS HERNANDEZ, ALBERTO; 5610
dc.date.accessioned 2022-12-21T01:06:06Z
dc.date.available 2022-12-21T01:06:06Z
dc.date.issued 2022-12-16
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/20.500.11799/137457
dc.description Artículo de acceso abierto. es
dc.description.abstract A test of independence is commonly used to determine differences (or associations) between samples in a nominal level measurement. Fisher’s exact test and Chi-square test are two of the most widely applied tests of independence used in the data analyses in different areas such as information technologies, biostatistics, psychology and health sciences. In some cases, contingency tables with null entries (also called random zeros) arise, particularly if the number of samples is small, and the variables analyzed are multilevel. This situation becomes a problem because if one or more entries in a contingency table are zero or have small values, then the tests of independence produce unreliable results. In this paper, we propose a method to address that issue. The method merges one or more levels of the variables analyzed to create contingency tables with only one degree of freedom, avoiding applying a test of independence on contingency tables with random zeros. The source code (Python) of the method is publicly available for use. The results obtained using our method give a complete panorama of the associations between the variables of a data set. To show the effectiveness of our approach to find dependencies between variables, we use four data sets publicly available on the Internet. es
dc.language.iso eng es
dc.publisher Applied Sciences es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0
dc.subject Test of independence es
dc.subject Chi-square test es
dc.subject Fisher’s exact test es
dc.subject Multilevel variables es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Dichotomization of multilevel variables to detect hidden associations es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Zumpango es
dc.ambito Internacional es
dc.cve.progEstudios 38 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7
dc.relation.vol 12
dc.relation.año 2022
dc.relation.no 24
dc.relation.doi 10.3390/ app122412929


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Dichotomization of multilevel variables to detect hidden associations
  • Autor
  • LOPEZ CHAU, ASDRUBAL
  • Rodríguez Mazahua, Lisbeth
  • García Lamont, Farid
  • QUINTANA LOPEZ, MARICELA
  • ROJAS HERNANDEZ, ALBERTO
  • Fecha de publicación
  • 2022-12-16
  • Editor
  • Applied Sciences
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Test of independence
  • Chi-square test
  • Fisher’s exact test
  • Multilevel variables
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas