Mostrar el registro sencillo del objeto digital

dc.contributor.author VALDES GARCIA, ROBERTO CARLOS
dc.contributor.author García Lamont, Farid
dc.contributor.author GARCIA LOZANO, RODOLFO ZOLA
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author HERNANDEZ COMO, NORBERTO
dc.creator VALDES GARCIA, ROBERTO CARLOS; 852501
dc.creator García Lamont, Farid; 216477
dc.creator GARCIA LOZANO, RODOLFO ZOLA; 91605
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator HERNANDEZ COMO, NORBERTO; 204286
dc.date.accessioned 2023-02-21T02:38:18Z
dc.date.available 2023-02-21T02:38:18Z
dc.date.issued 2023-02-16
dc.identifier.issn 0957-4522
dc.identifier.uri http://hdl.handle.net/20.500.11799/137948
dc.description.abstract This work presents a method based on supervised learning for the extraction of parameters in Indium Gallium Zinc Oxide Thin-Film Transistors with aluminium contacts, as an alternative regarding analytical and optimisation methods. The method consists of generating a set of I–V curves of the device of interest using Spice software. These curves are the input samples of the Artificial Neural Networks, from which it is intended to predict the different parameters such as threshold voltage, transconductance and contact resistance, from each sample curve. By generating the training set itself, it is possible to label each sample curve, which allows the type of learning to be supervised. The results show that ANNs provide parameters with which it is possible to model physical measurements with error rates of less than 5% when extracting the first two parameters, and errors of between 0.06% and 4.62%, when extracting the three parameters. In addition, a comparison was made between the results of the ANNs and the analytical extraction of parameters. es
dc.language.iso eng es
dc.publisher Journal of Materials Science: Materials in Electronics es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Neural networks es
dc.subject Parameter extraction es
dc.subject Transistors es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Parameter extraction in thin film transistors using artificial neural networks es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 1009 es
dc.audience students es
dc.audience researchers es
dc.type.conacyt article
dc.identificator 7
dc.relation.vol 34
dc.relation.doi 10.1007/s10854-023-09953-z


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Parameter extraction in thin film transistors using artificial neural networks
  • Autor
  • VALDES GARCIA, ROBERTO CARLOS
  • García Lamont, Farid
  • GARCIA LOZANO, RODOLFO ZOLA
  • LOPEZ CHAU, ASDRUBAL
  • HERNANDEZ COMO, NORBERTO
  • Fecha de publicación
  • 2023-02-16
  • Editor
  • Journal of Materials Science: Materials in Electronics
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Neural networks
  • Parameter extraction
  • Transistors
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas