Mostrar el registro sencillo del objeto digital

dc.contributor.author Miranda, Grisel
dc.contributor.author Alejo, Roberto
dc.contributor.author Rendón, Eréndira
dc.contributor.author Granda Gutiérrez, Everardo Efrén
dc.contributor.author Valdovinos, Rosa Maria
dc.contributor.author Del Razo, Federico
dc.date.accessioned 2023-02-28T04:35:02Z
dc.date.available 2023-02-28T04:35:02Z
dc.date.issued 2022-08-16
dc.identifier.isbn 978-3-031-13832-4
dc.identifier.uri http://hdl.handle.net/20.500.11799/138175
dc.description.abstract The pandemic caused by theCOVID-19 disease has affected all aspects of the life of the people in every region of the world. The academic activities at universities in Mexico have been particularly disturbed by two years of confinement; all activities were migrated to an online modality where improvised actions and prolonged isolation have implied a significant threat to the educational institutions. Amid this pandemic, some opportunities to use Artificial Intelligence tools for understanding the associated phenomena have been raised. In this sense,we use the K-means algorithm, a well-known unsupervised machine learning technique, to analyze the data obtained from questionaries applied to students in a Mexican university to understand their perception of how the confinement and online academic activities have affected their lives and their learning. Results indicate that the K-means algorithm has better results when the number of groups is bigger, leading to a lower error in the model. Also, the analysis helps to make evident that the lack of adequate computing equipment, internet connectivity, and suitable study spaces impact the quality of the education that students receive, causing other problems, including communication troubles with teachers and classmates, unproductive classes, and even accentuate psychological issues such as anxiety and depression. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0 es
dc.subject K-means es
dc.subject COVID-19 es
dc.subject Machine Learning es
dc.subject Student Academic Activities es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Clustering Analysis in the Student Academic Activities on COVID-19 Pandemic in Mexico es
dc.type Artículo es
dc.provenance Científica es
dc.road Verde es
dc.organismo Ingeniería es
dc.ambito Nacional es
dc.relation.vol 13395


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Clustering Analysis in the Student Academic Activities on COVID-19 Pandemic in Mexico
  • Autor
  • Miranda, Grisel
  • Alejo, Roberto
  • Rendón, Eréndira
  • Granda Gutiérrez, Everardo Efrén
  • Valdovinos, Rosa Maria
  • Del Razo, Federico
  • Fecha de publicación
  • 2022-08-16
  • Editor
  • Springer
  • Tipo de documento
  • Artículo
  • Palabras clave
  • K-means
  • COVID-19
  • Machine Learning
  • Student Academic Activities
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas