Mostrar el registro sencillo del objeto digital

dc.contributor.author Castorena, Carlos
dc.contributor.author Alejo, Roberto
dc.contributor.author Rendón, Erendira
dc.contributor.author GRANDA GUTIERREZ EVERARDO EFREN, /
dc.contributor.author Valdovinos, Rosa Maria
dc.contributor.author Grisel, Miranda
dc.date.accessioned 2023-02-28T04:36:31Z
dc.date.available 2023-02-28T04:36:31Z
dc.date.issued 2022-08-15
dc.identifier.issn 1611-3349
dc.identifier.uri http://hdl.handle.net/20.500.11799/138176
dc.description.abstract Artificial Neural Networks (ANN) have encountered interesting applications in forecasting several phenomena, and they have recently been applied in understanding the evolution of the novel coronavirus COVID-19 epidemic. Alone or together with othermathematical, dynamical, and statistical methods,ANNhelp to predict or model the transmission behavior at a global or regional level, thus providing valuable information for decision-makers. In this research, four typical ANN have been used to analyze the historical evolution of COVID-19 infections in Mexico: Multilayer Perceptron (MLP), Convolutional Neural Networks (CNN), Long Short-Term Memory (LTSM) neural networks, and the hybrid approach LTSM-CNN. From the open-source data of the Resource Center at the John Hopkins University of Medicine, a comparison of the overall qualitative fitting behavior and the analysis of quantitative metrics were performed. Our investigation shows that LSTM-CNN achieves the best qualitative performance; however, the CNN model reports the best quantitative metrics achieving better results in terms of the Mean Squared Error and Mean Absolute Error. The latter indicates that the long-term learning of the hybrid LSTM-CNN method is not necessarily a critical aspect to forecast COVID-19 cases as the relevant information obtained from the features of data by the classical MLP or CNN. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0 es
dc.subject COVID-19 es
dc.subject Forecasting es
dc.subject Artificial Neural Networks es
dc.subject Deep Learning es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Artificial Neural Networks for COVID-19 Forecasting in Mexico: An Empirical Study es
dc.type Artículo es
dc.provenance Científica es
dc.road Verde es
dc.organismo Ingeniería es
dc.ambito Internacional es
dc.relation.vol 13393


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Artificial Neural Networks for COVID-19 Forecasting in Mexico: An Empirical Study
  • Autor
  • Castorena, Carlos
  • Alejo, Roberto
  • Rendón, Erendira
  • GRANDA GUTIERREZ EVERARDO EFREN, /
  • Valdovinos, Rosa Maria
  • Grisel, Miranda
  • Fecha de publicación
  • 2022-08-15
  • Editor
  • Springer
  • Tipo de documento
  • Artículo
  • Palabras clave
  • COVID-19
  • Forecasting
  • Artificial Neural Networks
  • Deep Learning
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas