Mostrar el registro sencillo del objeto digital

dc.contributor.author Jiménez-López, Eduardo
dc.contributor.author López-Rivero, Luis Antonio
dc.date.accessioned 2023-06-14T00:49:02Z
dc.date.available 2023-06-14T00:49:02Z
dc.date.issued 2023-05-25
dc.identifier.issn 2007-6363
dc.identifier.uri http://hdl.handle.net/20.500.11799/138533
dc.description.abstract The objective of this work is the use of artificial neural networks and cellular automata to support urban planning decisions in Mexico. We propose an automated model that predicts vertical urban growth, using socio-economic and geographic factors. A multidisciplinary model is presented, which uses artificial neural networks, cellular automata, spatial analysis methods and image processing. The model allows different scenarios of urban growth to be projected and simulated. All of this is built into QGIS through the Python programming language. The model is tested in Mexican cities such as Mexico City, Guadalajara and Monterrey during 2015 to 2020. Reliability ranges from 72% to 76% were obtained and validated by: i) the average number of projected skyscrapers, ii) Position using the Kappa index, and iii) Value in the image using the Jaccard index. With this we propose a technique that allows better informed decisions for urban planning and anticipate new infrastructure needs, projections and regulations. es
dc.language.iso eng es
dc.publisher Pädi es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject Artificial neural network, Cellular automata, Vertical urban growth. es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Artificial neural networks in the application of the growth of the urban sprawl es
dc.title.alternative Redes neuronales artificiales en la aplicación del crecimiento de la mancha urbana es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Ingeniería es
dc.ambito Estatal es
dc.cve.CenCos 20501 es
dc.relation.vol 1
dc.relation.doi https://doi.org/10.29057/icbi.v11i21.10565


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Artificial neural networks in the application of the growth of the urban sprawl
  • Autor
  • Jiménez-López, Eduardo
  • López-Rivero, Luis Antonio
  • Fecha de publicación
  • 2023-05-25
  • Editor
  • Pädi
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Artificial neural network, Cellular automata, Vertical urban growth.
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas