Mostrar el registro sencillo del objeto digital

dc.contributor.author García Valdés, Roberto Carlos
dc.contributor.author Garcia Lamont, Farid
dc.contributor.author García Lozano, Rodolfo Zolá
dc.contributor.author López Chau, Asdrúbal
dc.contributor.author Sánchez Fraga, Rodolfo
dc.contributor.author Lastra Medina, Gustavo
dc.date.accessioned 2023-09-23T00:58:19Z
dc.date.available 2023-09-23T00:58:19Z
dc.date.issued 2023-05-23
dc.identifier.issn 1548-0992
dc.identifier.uri http://hdl.handle.net/20.500.11799/138846
dc.description.abstract This paper presents a proposal for parameter extraction of a resistive load inverter circuit, with a Thin Film Transistor (TFT), using Artificial Neural Networks, Random Forest, Decision Trees and Support Vector Regression. Although analytical and optimization methods are usually used for this purpose, they have disadvantages such as the need for expertise or complex implementation. This work shows that these supervised learning methods are useful for this task because they can learn the parameters of the device transfer curves, obtaining a good fit between the measurements and the extracted parameters. The different methods were trained using a data set constructed from simulations performed with AIM-Spice software, where the parameters affecting different regions of the inverter characteristic curve were extracted. In the experimental stage, the Neural Networks obtained better results, with an average error rate of 6.04%. The method was also applied to real NMOS measurements and yielded minimum errors of up to 0.43%. es
dc.language.iso spa es
dc.publisher IEEE Latin America Transactions es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Inverter circuit es
dc.subject Parameter extraction es
dc.subject Supervised learning es
dc.subject Modeling es
dc.subject Electronic simulation es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Parameter Extraction from a Resistive Load Inverter Circuit using Supervised Learning Methods es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Nacional es
dc.cve.CenCos 30401 es
dc.relation.vol 21
dc.relation.no 5
dc.relation.doi https://doi.org/10.1109/TLA.2023.10130840


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Parameter Extraction from a Resistive Load Inverter Circuit using Supervised Learning Methods
  • Autor
  • García Valdés, Roberto Carlos
  • Garcia Lamont, Farid
  • García Lozano, Rodolfo Zolá
  • López Chau, Asdrúbal
  • Sánchez Fraga, Rodolfo
  • Lastra Medina, Gustavo
  • Fecha de publicación
  • 2023-05-23
  • Editor
  • IEEE Latin America Transactions
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Inverter circuit
  • Parameter extraction
  • Supervised learning
  • Modeling
  • Electronic simulation
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas