Mostrar el registro sencillo del objeto digital

dc.contributor.author Mendizabal, Leire
dc.contributor.author Maddi, Arregi
dc.contributor.author Valerio Deogracia, Johanna
dc.contributor.author Ramos Levi, Ana M
dc.contributor.author Barabash, Ana
dc.contributor.author García de la Torre, Nuria
dc.contributor.author Arana, Eunate
dc.contributor.author Urrutia, Inés
dc.contributor.author Gaztambide, Sonia
dc.contributor.author Castano, Luis
dc.contributor.author Martínez Martínez, María de los Angeles
dc.contributor.author Camarillo_Romero, Eneida
dc.contributor.author Mendieta Zerón, Hugo
dc.contributor.author Garduño García, Jesús
dc.contributor.author Corcoy, Rosa
dc.contributor.author Simon, Laureano
dc.contributor.author Zulueta, Mirella
dc.contributor.author Calle, Alfonso I
dc.date.accessioned 2023-11-15T01:54:52Z
dc.date.available 2023-11-15T01:54:52Z
dc.date.issued 2022
dc.identifier.issn 0012-1797
dc.identifier.uri http://hdl.handle.net/20.500.11799/139223
dc.description.abstract Background and Objective: GDM is associated with life-long adverse outcomes for mother and baby, and its incidence is increasing. Markers beyond clinical factors are needed to identify women at high risk and catalyze early preventive interventions. Our aim was to develop a risk assessment algorithm that integrates genetic and clinical variables. Methods: We analyzed a retrospective cohort of 711 women from Hospital Clínico San Carlos (HCSC, Madrid, Spain) , with 425 control pregnancies and 286 GDM cases diagnosed per IADPSG criteria. The HCSC cohort was randomly divided into a training/development dataset (70% of cohort) for algorithm development and a test dataset (30% of cohort) for validation. In addition, we tested the model in a cohort of 157 women (89 controls, 68 cases diagnosed per NDDG criteria from Hospital Cruces (Bilbao, Spain) and in a cohort of 416 women (346 controls, 70 cases per IADPSG criteria from HMPMPS, México) . A total of 114 SNPs were selected for this analysis after exhaustive exploration of the databases published to date of SNPs associated with GDM. The SNPs were selected based on their predictive power and population frequency, with the following criteria: OR>1.2, RAF>0.20, p<1×10-5. Discrimination and calibration of risk scores were assessed using the receiver operating characteristic (ROC) curve in the internal and the external validation groups. Results: The algorithm provided a risk score for GDM, integrating 10 SNPs, maternal age, and pregestational BMI. In the training dataset the AUC was 0.74, sensitivity of 77% and specificity of 64%. AUCs in the HCSC, UAEM and Cruces validation sets were 0.71, 0.70 and 0.62 respectively. Conclusions: This new tool for GDM risk assessment suggests that the utilization of genetic markers in combination with clinical characteristics may improve GDM risk evaluation and accelerate adoption of prevention interventions. Our study also highlights the importance of applying consensus criteria for the diagnosis of GDM. es
dc.description.sponsorship Patia Biopharma S. A. es
dc.language.iso eng es
dc.publisher New Gestational Diabetes Mellitus Risk Algorithm es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject Gestational Diabetes Mellitus es
dc.subject Risk algorithm es
dc.subject SNPs es
dc.subject.classification MEDICINA Y CIENCIAS DE LA SALUD es
dc.title 156-LB: New Gestational Diabetes Mellitus Risk Algorithm es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Medicina es
dc.ambito Internacional es
dc.relation.vol 71
dc.relation.no Supplement_1
dc.relation.doi 10.2337/db22-156-LB


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • 156-LB: New Gestational Diabetes Mellitus Risk Algorithm
  • Autor
  • Mendizabal, Leire
  • Maddi, Arregi
  • Valerio Deogracia, Johanna
  • Ramos Levi, Ana M
  • Barabash, Ana
  • García de la Torre, Nuria
  • Arana, Eunate
  • Urrutia, Inés
  • Gaztambide, Sonia
  • Castano, Luis
  • Martínez Martínez, María de los Angeles
  • Camarillo_Romero, Eneida
  • Mendieta Zerón, Hugo
  • Garduño García, Jesús
  • Corcoy, Rosa
  • Simon, Laureano
  • Zulueta, Mirella
  • Calle, Alfonso I
  • Fecha de publicación
  • 2022
  • Editor
  • New Gestational Diabetes Mellitus Risk Algorithm
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Gestational Diabetes Mellitus
  • Risk algorithm
  • SNPs
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas