Mostrar el registro sencillo del objeto digital

dc.contributor.author Munguía Lira, Julio Cesar
dc.contributor.author Rendón Lara, Eréndira
dc.contributor.author Alejo Eleuterio, Roberto
dc.contributor.author Granda Gutiérrez, Everardo Efrén
dc.contributor.author Del Razo López, Federico
dc.date.accessioned 2024-02-07T21:33:48Z
dc.date.available 2024-02-07T21:33:48Z
dc.date.issued 2023-09-21
dc.identifier.issn 2227-7390
dc.identifier.uri http://hdl.handle.net/20.500.11799/139897
dc.description Artículo sobre un método para manejar imbalance de clases es
dc.description.abstract In machine learning and data mining applications, an imbalanced distribution of classes in the training dataset can drastically affect the performance of learning models. The class imbalance problem is frequently observed during classification tasks in real-world scenarios when the available instances of one class are much fewer than the amount of data available in other classes. Machine learning algorithms that do not consider the class imbalance could introduce a strong bias towards the majority class, while the minority class is usually despised. Thus, sampling techniques have been extensively used in various studies to overcome class imbalances, mainly based on random undersampling and oversampling methods. However, there is still no final solution, especially in the domain of multi-class problems. A strategy that combines density-based clustering algorithms with random undersampling and oversampling techniques is studied in this work. To analyze the performance of the studied method, an experimental validation was achieved on a collection of hyperspectral remote sensing images, and a deep learning neural network was utilized as the classifier. This data bank contains six datasets with different imbalance ratios, from slight to severe. The experimental results outperform the classification measured by the geometric mean of the precision compared with other state-of-the-art methods, mainly for highly imbalanced datasets. es
dc.language.iso eng es
dc.publisher Mathematics es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject density-based clustering es
dc.subject sampling methods es
dc.subject deep neural networks es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Density-Based Clustering to Deal with Highly Imbalanced Data in Multi-Class Problems es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Atlacomulco es
dc.ambito Internacional es
dc.relation.vol 11
dc.relation.año 2023
dc.relation.doi https://doi.org/10.3390/math11184008


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Density-Based Clustering to Deal with Highly Imbalanced Data in Multi-Class Problems
  • Autor
  • Munguía Lira, Julio Cesar
  • Rendón Lara, Eréndira
  • Alejo Eleuterio, Roberto
  • Granda Gutiérrez, Everardo Efrén
  • Del Razo López, Federico
  • Fecha de publicación
  • 2023-09-21
  • Editor
  • Mathematics
  • Tipo de documento
  • Artículo
  • Palabras clave
  • density-based clustering
  • sampling methods
  • deep neural networks
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas