Mostrar el registro sencillo del objeto digital

dc.contributor.author Garcia Amaro, Ernesto
dc.contributor.author Cervantes, Jair
dc.contributor.author Garcia Lamont, Farid
dc.contributor.author Lara Viveros, Francisco Marcelo
dc.contributor.author Ruiz Castilla, José Sergio
dc.contributor.author Espejel Cabrera, Josue
dc.date.accessioned 2024-08-07T17:15:55Z
dc.date.available 2024-08-07T17:15:55Z
dc.date.issued 2024-06-26
dc.identifier.issn 2007-9737
dc.identifier.uri http://hdl.handle.net/20.500.11799/141011
dc.description.abstract Computer vision, for decades, has been involved in solving problems in everyday life, under the implementation of different computational methods, that have evolved over time. Feature extraction, along with other computer techniques, is considered a way to develop computer vision systems; currently, plays an important role, considered a complex task, allowing to obtain essential descriptors of the segmented images, differentiating particular characteristics between different classes, even when they share similarity with each other, guaranteeing the delivery of information not redundant to classification algorithms. Likewise, in this work, a computer vision system has been developed for the recognition of foliar damage caused by diseases and pests in tomato plants. The methodology implemented is based on four modules: preprocessing, segmentation, feature extraction, and classification; in the first module, the image is preprocessed of a color space RGB to L* a* b*; in the second module, the area interest was segmented, under the implementation of the algorithm principal component analysis PCA; in the third module, features are extracted from the area of interest, obtaining texture descriptors with the Haralick algorithm, and chromatic features through Contrast descriptors, Hu moments, Gabor characteristics, Fourier descriptors, and discrete cosine transform DCT; in the fourth module, the performance of the classification algorithms were tested, with the characteristics obtained from the previous stage, considering: SVM, Backpropagation, Logistic Regression, KNN, and Random Forests. es
dc.language.iso eng es
dc.publisher Computación y Sistemas es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Tomato diseases and pests es
dc.subject Computer vision es
dc.subject Feature extraction es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Use of Computer Vision Techniques for Recognition of Diseases and Pests in Tomato Plants es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Nacional es
dc.cve.CenCos 30401 es
dc.relation.vol 28
dc.relation.año 2024
dc.relation.no 2
dc.relation.doi 10.13053/CyS-28-2-3927


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Use of Computer Vision Techniques for Recognition of Diseases and Pests in Tomato Plants
  • Autor
  • Garcia Amaro, Ernesto
  • Cervantes, Jair
  • Garcia Lamont, Farid
  • Lara Viveros, Francisco Marcelo
  • Ruiz Castilla, José Sergio
  • Espejel Cabrera, Josue
  • Fecha de publicación
  • 2024-06-26
  • Editor
  • Computación y Sistemas
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Tomato diseases and pests
  • Computer vision
  • Feature extraction
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas