Mostrar el registro sencillo del objeto digital

dc.contributor.author Jardón, Edgar
dc.contributor.author Romero, Marcelo
dc.contributor.author Marcial-Romero, José-Raymundo
dc.date.accessioned 2026-01-26T23:46:43Z
dc.date.available 2026-01-26T23:46:43Z
dc.date.issued 2025-12-09
dc.identifier.issn 3004-8311
dc.identifier.uri http://hdl.handle.net/20.500.11799/143241
dc.description.abstract Urban growth modeling is essential for effective urban planning, yet conventional techniques often lack spatial precision and rely heavily on manual image processing. This study proposes a semi-automated methodology using Spatial Markov Chains (SMC) to enhance urban growth projection by incorporating a novel image pre-processing technique. This approach combines automated image treatment with SMC modeling to estimate not only the probability of urban expansion but also its spatial placement, addressing a critical gap in urban growth forecasting methods. Using Landsat 7 and 8 satellite imagery, six Mexican cities–Acapulco, Puebla, Querétaro, Tampico, Tijuana, and Toluca–were selected as case studies. Data from 2003 were used to project urban expansion for 2017 and 2031, with four performance metrics–Kappa index, Jaccard index, Shannon’s entropy, and fractal dimension–applied to evaluate model accuracy. Results indicate that this approach produces reliable projections with a spatial accuracy exceeding 85%, as validated by metrics such as the Kappa index (0.75–0.81) and the Jaccard index (0.68–0.92). These results highlight the method’s capability to outperform traditional models in terms of precision and spatial detail, making it a robust tool for urban planning. The findings demonstrate the potential of semi-automated SMC methods to improve the precision of urban growth models, offering a valuable resource for policymakers and urban planners seeking to manage sustainable development effectively. es
dc.language.iso eng es
dc.publisher Springer es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject GIS es
dc.subject Urban growth es
dc.subject Markov ChainS es
dc.subject Goodness fit metrics es
dc.subject.classification CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA es
dc.title Urban expansion modeling with a semi automated spatial Markov chain framework es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Internacional es
dc.relation.vol 2
dc.validacion.itt No es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Urban expansion modeling with a semi automated spatial Markov chain framework
  • Autor
  • Jardón, Edgar
  • Romero, Marcelo
  • Marcial-Romero, José-Raymundo
  • Fecha de publicación
  • 2025-12-09
  • Editor
  • Springer
  • Tipo de documento
  • Artículo
  • Palabras clave
  • GIS
  • Urban growth
  • Markov ChainS
  • Goodness fit metrics
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas