Mostrar el registro sencillo del objeto digital

dc.contributor.author Solis Winkler, Agustin
dc.contributor.author Marcial-Romero, J. Raymundo
dc.contributor.author Hernandez-Servin, J. A.
dc.date.accessioned 2026-02-18T03:45:26Z
dc.date.available 2026-02-18T03:45:26Z
dc.date.issued 2025-08-11
dc.identifier.issn 2073-8994
dc.identifier.uri http://hdl.handle.net/20.500.11799/143529
dc.description Articulo es
dc.description.abstract The black-box nature of deep machine learning hinders the extraction of knowledge in science. To address this issue, a proposal for a neural network (k-net) based on the Kolmogorov–Arnold Representation Theorem is presented, pursuing to be an alternative to the traditional Multilayer Perceptron. In its core, the algorithmic nature of neural networks lies in the fundamental symmetry between forward-mode and reverse-mode accumulation techniques, both of which rely on the chain rule of partial derivatives. These methods are essential for computing gradients of functions, an operation that is at the core of the training process of neural networks. Automatic differentiation addresses the need for accurate and efficient calculation of derivative values in scientific computing; procedural programs are thus transformed into the computation of the required derivatives at the same numerical arguments. This work formalizes the algebraic structure of neural network computations by framing the training process within the domain of hyperdual numbers. Specifically, it defines a Kolmogorov–Arnold-inspired neural network (k-net) using dual numbers by extending the univariate functions and their compositions that appear in the representation theorem. This approach focuses on computation of the Jacobian and the ability to implement such procedures algorithmically, without sacrificing accuracy and mathematical rigor, while exploiting the inherent symmetry of the dual number formalism. es
dc.language.iso eng es
dc.publisher symmetry es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject symmetry; dual numbers; machine learning; k-nets; neural networks es
dc.subject.classification CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA es
dc.title Symmetry in the Algebra of Learning: Dual Numbers and the Jacobian in K-Nets es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.ambito Internacional es
dc.relation.vol 17
dc.validacion.itt No es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Symmetry in the Algebra of Learning: Dual Numbers and the Jacobian in K-Nets
  • Autor
  • Solis Winkler, Agustin
  • Marcial-Romero, J. Raymundo
  • Hernandez-Servin, J. A.
  • Fecha de publicación
  • 2025-08-11
  • Editor
  • symmetry
  • Tipo de documento
  • Artículo
  • Palabras clave
  • symmetry; dual numbers; machine learning; k-nets; neural networks
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas