Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes Canales, Jair
dc.contributor.author García Lamont, Farid
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author Rodríguez Mazahua, Lisbeth
dc.contributor.author RUIZ CASTILLA, JOSE SERGIO
dc.creator Cervantes Canales, Jair; 101829
dc.creator García Lamont, Farid; 216477
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator Rodríguez Mazahua, Lisbeth; 268183
dc.creator RUIZ CASTILLA, JOSE SERGIO; 231221
dc.date.accessioned 2016-05-11T15:46:15Z
dc.date.available 2016-05-11T15:46:15Z
dc.date.issued 2015-08-18
dc.identifier.issn 1568-4946
dc.identifier.uri http://hdl.handle.net/20.500.11799/41184
dc.description.abstract Support Vector Machine (SVM) has important properties such as a strong mathematical background and a better generalization capability with respect to other classification methods. On the other hand, the major drawback of SVM occurs in its training phase, which is computationally expensive and highly dependent on the size of input data set. In this study, a new algorithm to speed up the training time of SVM is presented; this method selects a small and representative amount of data from data sets to improve training time of SVM. The novel method uses an induction tree to reduce the training data set for SVM, producing a very fast and high-accuracy algorithm. According to the results, the proposed algorithm produces results with similar accuracy and in a faster way than the current SVM implementations. es
dc.description.sponsorship Proyecto UAEM 3771/2014/CI es
dc.language.iso eng es
dc.publisher Applied Soft Computing es
dc.relation.ispartofseries dx.doi.org/10.1016/j.asoc.2015.08.048;
dc.rights openAccess
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject SVM es
dc.subject Classification es
dc.subject Large data sets es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Data selection based on decision tree for SVM classification on large data sets es
dc.type Artículo
dc.provenance Científica
dc.road Dorada
dc.ambito Internacional es
dc.audience students
dc.audience researchers
dc.type.conacyt article
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Data selection based on decision tree for SVM classification on large data sets
  • Autor
  • Cervantes Canales, Jair
  • García Lamont, Farid
  • LOPEZ CHAU, ASDRUBAL
  • Rodríguez Mazahua, Lisbeth
  • RUIZ CASTILLA, JOSE SERGIO
  • Fecha de publicación
  • 2015-08-18
  • Editor
  • Applied Soft Computing
  • Tipo de documento
  • Artículo
  • Palabras clave
  • SVM
  • Classification
  • Large data sets
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas