Mostrar el registro sencillo del objeto digital

dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author ROJAS HERNANDEZ, RAFAEL
dc.contributor.author TRUJILLO MORA, VALENTIN
dc.contributor.author CERVANTES CANALES, JAIR
dc.contributor.author RODRIGUEZ MAZAHUA, LISBETH
dc.contributor.author GARCIA LAMONT, FARID
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator ROJAS HERNANDEZ, RAFAEL; 49105
dc.creator TRUJILLO MORA, VALENTIN; 43420
dc.creator CERVANTES CANALES, JAIR; 101829
dc.creator RODRIGUEZ MAZAHUA, LISBETH; 268183
dc.creator GARCIA LAMONT, FARID; 216477
dc.date.accessioned 2018-02-16T18:02:22Z
dc.date.available 2018-02-16T18:02:22Z
dc.date.issued 2017
dc.identifier.isbn 978-3-319-63314-5
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/20.500.11799/68630
dc.description.abstract In most of classic plant identification methods a dichotomous or multi-access key is used to compare characteristics of leaves. Some questions about if the analyzed leaves are lobed, unlobed, simple or compound need to be answered to identify plants successfully. However, very little attention has been paid to make an automatic distinction of leaves using such features. In this paper we first explore if incorporating prior knowledge about leaves (categorizing between lobed simple leaves, and the unlobed simple ones) has an effect on the performance of six classification methods. According to the results of experiments with more than 1,900 images of leaves from Flavia data set, we found that it is statically significant the relationship between such categorization and the improvement of the performances of the classifiers tested. Therefore, we propose two novel methods to automatically differentiate between lobed simple leaves, and the unlobed simple ones. The proposals are invariant to rotation, and achieve correct prediction rates greater than 98%. es
dc.language.iso eng es
dc.publisher Springer International Publishing es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0
dc.subject leaf features es
dc.subject mcnemar test es
dc.subject plant identification es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Leaf Categorization Methods for Plant Identification es
dc.type Capítulo de Libro es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Zumpango es
dc.ambito Internacional es
dc.cve.CenCos 30301 es
dc.cve.progEstudios 38 es
dc.audience students
dc.audience researchers
dc.type.conacyt bookPart
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Leaf Categorization Methods for Plant Identification
  • Autor
  • LOPEZ CHAU, ASDRUBAL
  • ROJAS HERNANDEZ, RAFAEL
  • TRUJILLO MORA, VALENTIN
  • CERVANTES CANALES, JAIR
  • RODRIGUEZ MAZAHUA, LISBETH
  • GARCIA LAMONT, FARID
  • Fecha de publicación
  • 2017
  • Editor
  • Springer International Publishing
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • leaf features
  • mcnemar test
  • plant identification
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas