Resumen:
This work presents the study of the electrical conductivity in MWNT as a function of three different chemical functionalization conditions. Unmodified and chemically modified MWNT were characterized by microRaman spectroscopy, XPS and SEM whereas the electrical conductivity was determined by dust compression technique. MWNT were modified using three different oxidation conditions: (1) a mix of concentrated acids, H2SO4/HNO3 (3:1, v/v) sonicated for 2 h; (2) same mixture as (1) but using mechanical stirring for 6 h and (3) a reflux of an aqueous solution of HNO3 (20%, v/v) and mechanical stirring for 6 h. The characterization evidenced different functionalization degrees, based on the formation and detection of functional groups such as ether, carbonyl and carboxyl in different percentages. The unmodified CNT presented a conductivity of 510 S/m which decreased as the functionalization degree increased. For reactions (1) and (2) such conductivity was reduced by 8.8 and 15.5%, respectively, whereas for condition (3) it only decreased 0.98%.