Resumen:
A continuum is a non-degenerate compact connected metric space. Let C(X) be the hyperspace of all subcontinua of X. An element A2C(X) makes a hole in C(X) ifC(X){A} is not unicoherent. In this paper, we characterize the elements A2C(X) satisfying that A makes a hole in C(X) whenX is a smooth dendroid.
Sea H(X) un hiperespacio de un continuo X. Nos interesamos en la siguiente pregunta:
¿Para cuales elementos A ϵ H(X), A agujera a H(X)?