Mostrar el registro sencillo del objeto digital

dc.contributor.author ROJAS SIMON, JONATHAN
dc.contributor.author LEDENEVA, YULIA NIKOLAEVNA
dc.contributor.author GARCIA HERNANDEZ, RENE ARNULFO
dc.creator ROJAS SIMON, JONATHAN; 857852
dc.creator LEDENEVA, YULIA NIKOLAEVNA; 213954
dc.creator GARCIA HERNANDEZ, RENE ARNULFO; 202667
dc.date.accessioned 2018-03-16T23:27:52Z
dc.date.available 2018-03-16T23:27:52Z
dc.date.issued 2018-01-10
dc.identifier.issn 1405-5546
dc.identifier.uri http://hdl.handle.net/20.500.11799/80182
dc.description.abstract Over the last years, several Multi-Document Summarization (MDS) methods have been presented in Document Understanding Conference (DUC), workshops. Since DUC01, several methods have been presented in approximately 268 publications of the stateof-the-art, that have allowed the continuous improvement of MDS, however in most works the upper bounds were unknowns. Recently, some works have been focused to calculate the best sentence combinations of a set of documents and in previous works we have been calculated the significance for single-document summarization task in DUC01 and DUC02 datasets. However, for MDS task has not performed an analysis of significance to rank the best multi-document summarization methods. In this paper, we describe a Genetic Algorithm-based method for calculating the best sentence combinations of DUC01 and DUC02 datasets in MDS through a Meta-document representation. Moreover, we have calculated three heuristics mentioned in several works of state-of-the-art to rank the most recent MDS methods, through the calculus of upper bounds and lower bounds. es
dc.language.iso eng es
dc.publisher Computación y Sistemas es
dc.relation.ispartofseries Vol.;22
dc.relation.ispartofseries No.;1
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject Procesamiento de Lenguaje Natural es
dc.subject Lingüística Computacional es
dc.subject Generación automática de Resúmenes es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Calculating the Upper Bounds for Multi-Document Summarization using Genetic Algorithms es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Internacional es
dc.cve.CenCos 31201 es
dc.audience students
dc.audience researchers
dc.type.conacyt article
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Calculating the Upper Bounds for Multi-Document Summarization using Genetic Algorithms
  • Autor
  • ROJAS SIMON, JONATHAN
  • LEDENEVA, YULIA NIKOLAEVNA
  • GARCIA HERNANDEZ, RENE ARNULFO
  • Fecha de publicación
  • 2018-01-10
  • Editor
  • Computación y Sistemas
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Procesamiento de Lenguaje Natural
  • Lingüística Computacional
  • Generación automática de Resúmenes
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas