Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes Canales, Jair
dc.contributor.author García Lamont, Farid
dc.contributor.author LOPEZ CHAU, ASDRUBAL
dc.contributor.author YEE RENDON, ARTURO
dc.creator Cervantes Canales, Jair; 101829
dc.creator García Lamont, Farid; 216477
dc.creator LOPEZ CHAU, ASDRUBAL; 100664
dc.creator YEE RENDON, ARTURO; 261089
dc.date.accessioned 2018-09-21T22:18:38Z
dc.date.available 2018-09-21T22:18:38Z
dc.date.issued 2018-07-25
dc.identifier.issn 1433-7541
dc.identifier.uri http://hdl.handle.net/20.500.11799/94747
dc.description Se propone un enfoque para calcular el numero de grupos en que una imagen de color debe segmentarse utilizando fuzzy c-means es
dc.description.abstract In this paper we introduce a method for color image segmentation by computing automatically the number of clusters the data, pixels, are divided into using fuzzy c-means. In several works the number of clusters is defined by the user. In other ones the number of clusters is computed by obtaining the number of dominant colors, which is determined with unsupervised neural networks (NN) trained with the image’s colors; the number of dominant colors is defined by the number of the most activated neurons. The drawbacks with this approach are as follows: (1) The NN must be trained every time a new image is given and (2) despite employing different color spaces, the intensity data of colors are used, so the undesired effects of nonuniform illumination may affect computing the number of dominant colors. Our proposal consists in processing the images with an unsupervised NN trained previously with chromaticity samples of different colors; the number of the neurons with the highest activation occurrences defines the number of clusters the image is segmented. By training the NN with chromatic data of colors it can be employed to process any image without training it again, and our approach is, to some extent, robust to non-uniform illumination. We perform experiments with the images of the Berkeley segmentation database, using competitive NN and self-organizing maps; we compute and compare the quantitative evaluation of the segmented images obtained with related works using the probabilistic random index and variation of information metrics. es
dc.language.iso eng es
dc.publisher Pattern Analysis and Applications es
dc.rights openAccess
dc.rights.uri http://creativecommons.org/licenses/by/4.0
dc.subject Competitive neural networks es
dc.subject Color classification es
dc.subject Image segmentation es
dc.subject Color spaces es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.title Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors es
dc.type Artículo
dc.provenance Científica
dc.road Dorada
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.progEstudios 663 es
dc.audience students
dc.audience researchers
dc.type.conacyt article
dc.identificator 7


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Automatic computing of number of clusters for color image segmentation employing fuzzy c-means by extracting chromaticity features of colors
  • Autor
  • Cervantes Canales, Jair
  • García Lamont, Farid
  • LOPEZ CHAU, ASDRUBAL
  • YEE RENDON, ARTURO
  • Fecha de publicación
  • 2018-07-25
  • Editor
  • Pattern Analysis and Applications
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Competitive neural networks
  • Color classification
  • Image segmentation
  • Color spaces
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas